Abstract

Cardiovascular Heart Disease CHD is one of main causes of death. Many signs and disease is associated with CHD. The purpose of this paper is to infer accuracy the Probability of Disease considering all factors and signs. To achieve this goal, the paper uses the concept of structured poly tree and Directed Acyclic Graphical model DAG to predict all the cases that can cause Cardiovascular Heart Disease. Depending on a hypothesis samples contain certain number of persons in the social society, this study identifies the existence of the disease in precise method. The main objective of this paper is to forecast the existence of any CHD diseases between samples of patients due to the signs of diseases appear on patients. This paper suggests the methodology of deduction starts by constructing the probabilistic graphical model of cardiovascular diseases, and then assigns and retrieves data through the nodes of the tree based on the rules of creating a Poly-Tree PT. And then seek to recuperate the configuration of the PT whilst making light of eradicating the necessitate intended for exterior semantics to resolve the way of the undergrowth. The first trend is to confine the advance to non-disintegrate PTs. A causal basin initiates with a multi-parent gather and persists in the route of causal stream to embrace all of the child’s offspring and all the through parents of offspring. The results based on system simulation depicts that directed acyclic graphical poly tree model predicts all types of heart diseases accurately and easily in an optimal situation. The benefit achieved in accurate inferring methods is to find a new way helps doctor do their diagnosis well. Inference system is presented to avoid false prediction of CHD. The most
significant additional properties of this system is taking into account all diseases and signs points to CHD.

References

- http://en.wikipedia.org/wiki/Bayesian_network, visit : 8-7-2011

Anticipating of Cardiovascular Heart Diseases using Computer based Poly Trees Model

- http://www. news-medical.net/health/What-is-Cardiovascular-Disease.aspx
- G. Rebane, J. Pearl, (1987): "The recovery of causal polynomials from statistical data", in third Conference on Uncertainty in Artificial Intelligence, pp. 222-228

Index Terms

Computer Science
Artificial Intelligence

Keywords

Cardiovascular Diseases Poly trees Inference Recovery algorithms System simulation