Abstract

This paper presents a brief introduction to multi-objective genetic algorithms and FPGAs[5][9]. In this paper we have discussed that how test pattern generation method can be formulated in terms of CNF form [2] and this CNF form can be used to generate test patterns using genetic algorithm. We have proposed that by applying a multi-objective genetic algorithm on this CNF form we can increase number of instances to satisfy boolean equation.

Reference

- P. Goel, An Implicit Enumeration Algorithm to Generate Test for Combinational Circuits,
Generating Boolean SAT based Test Pattern Generation using Multi-objective Genetic Algorithm

- V. Sivaramalrishnan Sharad C. Seth Parallel Test Pattern Generation Using Boolean Satisfiability TH0340-0/0000/00 1991 IEEE Multi-objective optimization is that in which we have to optimize multiple objectives. So this field can be applied to various SAT instances to increase the efficiency of test generation.
- Paolo Prineto, Maurizio Rebaudengo, and Matteo Soriza “GATTO: A Genetic Algorithm for Automatic Test Pattern Generation for Large Synchronous Sequential Circuits” IEEE TRANSACTIONSV ON COMPUTE AIDED DESIGN , VOL. 15, NO. 8, AUGUST 1996
- Li Shen “Genetic Algorithm Based Test Generation for Sequential Circuits” Institute of Computing Technology, Beijing May 2000
- Ying Gao Lei Shi Pingjin Yao “Study on Multi-Objective Genetic Algorithm” July,2000
- Michael S. Hsiao Virginia Tech, Blacksburg, Virginia VLSI Principles And Architecture, Pages 161-262 2006

Index Terms

Computer Science Algorithms
Key words

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FPGAs</td>
<td>CNF</td>
</tr>
<tr>
<td>Multi-objective Algorithm</td>
<td></td>
</tr>
</tbody>
</table>