Abstract

This paper presents a brief introduction to multi-objective genetic algorithms and FPGAs[5][9]. In this paper we have discussed that how test pattern generation method can be formulated in terms of CNF form [2] and this CNF form can be used to generate test patterns using genetic algorithm. We have proposed that by applying a multi-objective genetic algorithm on this CNF form we can increase number of instances to satisfy boolean equation.

Reference

- P. Goel, An Implicit Enumeration Algorithm to Generate Test for Combinational Circuits,
- V. Sivaramalcrishnan Sharad C.Seth Parallel Test Pattern Generation Using Boolean Satisfiability TH0340-0/0000/00 1991 IEEE Multi-objective optimization is that in which we have to optimize multiple objectives. So this field can be applied to various SAT instances to increase the efficiency of test generation.
- Paolo Prinetto, Maurizio Rebaudengo, and Matteo Soriza “GATTO: A Genetic Algorithm for Automatic Test Pattern Generation for Large Synchronous Sequential Circuits” IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 15, NO. 8, AUGUST 1996
- Li Shen “Genetic Algorithm Based Test Generation for Sequential Circuits” Institute of Computing Technology, Beijing May 2000
- Ying Gao Lei Shi Pingjin Yao “Study on Multi-Objective Genetic Algorithm” July, 2000
- Michael S. Hsiao Virginia Tech, Blacksburg, Virginia VLSI Principles And Architecture, Pages 161-262 2006

Index Terms

Computer Science Algorithms
Key words

FPGAs
Multi-objective Algorithm
CNF