Abstract

Distribution of the tasks amongst the various computing nodes is itself an intellectually challenging problem in the high performance distributed computing systems. To choose the appropriate strategy for the required system is difficult without the meaningful comparison of the existing task partitioning and load balancing strategies. The effectiveness of the strategy depend on the number of factors-efficiency, interconnection topology, communication mode, program structure, throughput and computing capabilities of the structure. A number of task partitioning and load balancing strategies have been proposed, each of which perform remarkable results under different circumstances. The main goal of the paper is to unravel the mystery of strategies and to classify when and where each strategy is appropriate. In this paper, taxonomy of task partitioning and load balancing is presented in an attempt to provide a common terminology and classification mechanism.

References

Classification of Task Partitioning and Load Balancing Strategies in Distributed Parallel Computing Systems

- Gajski, D., and Peir, J., "Essential Issue in Multiprocessor" IEEE Computer Vol 18, No. 6, 1985, pp. 1-5.
- Kwok Y. and Ahmad I., "Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors" ACM Computing Surveys 31(4) (December 1999) 406–471
- Radulescu A. and A. J. C. van Gemund. "On the complexity of list scheduling
algorithms for distributed memory systems. ACM Int'l Conf. on Supercomputing, Rhodes Greece, 1999.

International Conference on Parallel and Distributed Systems, 1993, pp. 271–276.

Index Terms

Computer Science

Distributed Systems

Keywords

Task Scheduling Dynamic Preemptive Non-Preemptive Parallel Computing