Abstract

A dominating set D of a graph $G = (V; E)$ is non-split dominating set if $hV n D_i$ is connected. The non-split domination number of G is the minimum cardinality of a non-split dominating set in G. Let D be a minimum dominating set in G. If a subset D_0 of $V n D$ is dominating in G, then D_0 is called an inverse dominating set with respect to D. Furthermore, if $V n D_0$ is connected, then D_0 is called an inverse non-split dominating set. The inverse non-split domination number of G is the minimum cardinality of an inverse non-split dominating set in G.

In this paper, characterization of non-split dominating sets in the join and corona of two graphs are presented. Furthermore, explicit formulas for determining the non-split and inverse non-split domination numbers of these graphs are also determined.

References

- K. Ameenal Bibi, K. Selvakumar. The inverse split and nonsplit domination in graphs.
Non-split and Inverse Non-split Domination Numbers in the Join and Corona of Graphs

Index Terms

Computer Science
Applied Mathematics

Keywords

non-split domination inverse non-split domination join coronaifx