Abstract

A dominating set D of a graph $G = (V;E)$ is non-split dominating set if $hV \cap D$ is connected. The non-split domination number of G is the minimum cardinality of a non-split dominating set in G. Let D be a minimum dominating set in G. If a subset D' of $V \cap D$ is dominating in G, then D' is called an inverse dominating set with respect to D. Furthermore, if $V \cap D'$ is connected, then D' is called an inverse non-split dominating set. The inverse non-split domination number of G is the minimum cardinality of an inverse non-split dominating set in G. In this paper, characterization of non-split dominating sets in the join and corona of two graphs are presented. Furthermore, explicit formulas for determining the non-split and inverse non-split domination numbers of these graphs are also determined.

References

- K. Ameenal Bibi, K. Selvakumar. The inverse split and non-split domination in graphs.
Index Terms

Computer Science Applied Mathematics

Keywords

non-split domination inverse non-split domination join corona