A Modified Fuzzy Logic Routing for Wireless Mesh Network

Authors:
K. Sasikala
V. Rajamani

10.5120/9665-3795

Abstract

To make routing decisions based on more than one check, buffer residency, node energy and hop count and to provide an efficient routing method for wireless mesh networks, a fuzzy based oblivious routing is proposed in this paper. Simulation results in ns-2 verify that they perform better than multiple restriction routing. The AP need not be in the reach of all the nodes in the network. Nodes around the AP forward the packets from the neighbor nodes to the AP. If there are an important number of nodes in the network, neighbor nodes can transfer data with the AP in a few hop. In this wireless mesh network to used for oblivious routing fuzzy logic to perform high level data to reach the destination, any traffic occurred in this network it’s to be cleared and data to be send on efficiently on their network

References

- Mieso K. Denko1, Isaac Woungang2, Han-Chieh Chao3 and Pedro Cuenca University of Guelph, Canada "Special issue on ubiquitous wireless mesh networks" 2009.
- Anne magaly de paula canuta "combining neural network and fuzzy logic for application in chapter recognition" may 2001(pp. 1-196).
A Modified Fuzzy Logic Routing for Wireless Mesh Network

- Abdul Mateen, Basit Raza, Mian Muhammad Awais, Muhammad Sher; Selection of the Best DBMS: A Fuzzy based Multi-objective Decision Making Approach; from http://www.monarch.cs.cmu.edu/.
- Antonio M. Ortiz and Teresa Olivares Albacete Research Institute of Informatics Spain; Fuzzy Logic Applied to Decision Making in Wireless Sensor Networks; (pp. 223-239).
- N. Kumaresan, J. Kavikumar, and Kuru Ratnavelu; Simulink Approach to Solve Fuzzy Differential Equation under Generalized Differentiability; World Academy of Science, Engineering and Technology 64 2012 (pp. 980-983).
- M. H. Farahi, S. Barati; Department of Applied Mathematics, Ferdowsi University of Mashhad, Iran, farahi@math.um.ac.ir; Fuzzy Time-Delay Dynamical Systems; The Journal of Mathematics and Computer Science Vol. 2 No. 1 (2011) pp. 44-53.
- A. J. Yuste, Alicia Triviño, F. D. Trujillo and E. Casilari; Department of Telecommunications Engineering, Jaen University, Linares (Jaen), Spain; ajyuste@ujaen.es; USING FUZZY LOGIC IN HYBRID MULTIHOP WIRELESS NETWORKS; International Journal of Wireless & Mobile Networks (IWMN), Vol. 2, No. 3, August 2010 (pp. no 96-108).
- A. A. Bhorkar, M. Naghshvar, T. Javidi, Member, IEEE, and B. D. Rao, Fellow, IEEE; An Adaptive Opportunistic Routing Scheme for Wireless Ad-hoc Networks; (pp. no 1-14).
- Rafael Lopes Gomesa, Waldir Moreira Juniorb, Eduardo Cerqueirac, Antonio Jorge Abel’em; a Federal University of Para, Para, Brazil; Using Fuzzy Link Cost and Dynamic Choice of Link Quality Metrics to Achieve QoS and QoE in Wireless Mesh Networks; (June 24, 2010).
- Kausik Kumar Majumdar and Dwijesh Dutta Majumder; Fuzzy Differential Inclusions in Atmospheric and Medical Cybernetics; IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 2, APRIL 2004 (pp. 877-887).
- Bimal k. bose and Ronald; Design and performance evaluation of a fuzzy logic based variable speed wind generation system; vol of jun/jul on 97.

Index Terms

Computer Science

Wireless
Keywords
Wireless Mesh Network Fuzzy Logic AODV Access Point Constant Bit Rate Oblivious Routing