Abstract

In wireless mobile communication systems, proper channel allocation scheme is required. Due to the limitation of available frequency spectrum, channels must be reused as much as possible to increase system capacity. Complication arises in channel allocation, when more than one cell become "hot-spot" in the network of one BSC. The cells become "hot-spot" when bandwidth resources currently available in those cells are not sufficient to sustain any more call. In hybrid channel allocation, cells send a multilevel hot-spot notification to the dynamic pool of BSC on each channel request that cannot be satisfied locally at the base station. Proportional to the current hot-spot level of the cell, this hot-spot notification will request more than one channel to assign to the requesting cell. Severe complication arises, when not even one channel available in the dynamic pool of BSC in order to assign to requesting cells. This is the situation, when call starts dropping or blocking. This paper presents a new scheme in which BSC will fetch those ideal channels, which are borrowed to requesting cell from the dynamic pool in the time of hot spot but become ideal in the temporary pool of BTS for some period of time. BTS make use of these channels in order to sustain new incoming call . The proposed algorithm in this paper will reduce the call dropping probability comparatively more than the simple hybrid channel allocation algorithm.

References
Optimal Channel Allocation with Hot-Spot Technique in Wireless Network

- Geetali Vidyarthi, Alioune Ngom, and Ivan Stojsmenovic, "A Hybrid Channel Assignment Approach Using an Efficient Evolutionary Strategy in Wireless Mobile Networks"; IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 5, SEPTEMBER 2005
- Jiming Chen, Senior Member, IEEE, Qing Yu, Peng Cheng, Youxian Sun, Yanfei Fan, and Xuemin Shen, Fellow, IEEE, "Game Theoretical Approach for Channel Allocation in Wireless Sensor and Actuator Networks"; IEEE transactions on automatic control, vol. 56, no. 10, October 2011
- Günther Reise and Gerald Matz, "Optimal transmit power allocation in wireless sensor networks performing field reconstruction"; 978-1-4673-0046-9/12/$26.00 ©2012 IEEE
- Fan Wu and Nitin Vaidya, "Workload-Aware Opportunistic Routing in Multi-Channel, Multi-Radio Wireless Mesh Networks"; 2012 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON).
- Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS05, "Mobile Communications Chapter 2: Wireless Transmission"
- Yu cheng, hongkun li, and peng-jun wan, "A Theoretical framework for optimal cooperative networking in multiradio multichannel wireless networks"; IEEE Wireless Communications • April 2012
- Ashish Raniwala, Kartik Gopalan and Tzi-cker Chiueh, "Centralized Channel Assignment and Routing Algorithms for Multi-Channel Wireless Mesh Networks"; Mobile Computing and Communications Review, Volume 8, Number 2
- J Joshi, G Mundada, "A hybrid channel allocation algorithm to reduce call blocking probability using hot-spot notification"; Information and Automation for sustainability, 2010 - ieeexplore.ieee.org
- Hasan C, am, "Nonblocking OVSF Codes and Enhancing Network Capacity for 3G Wireless and Beyond Systems"; Proc. of The 2002 International Conference on Wireless

Keywords
hybrid channel allocation hot-spot blocking probability handover