Abstract

The main motivation of gait rehabilitation is to help a patient recovering from injury, illness or disease, to recover some locomotor abilities in order to promote as much independence as possible in activities of daily living tasks, and to assist the patient in compensating for deficits that cannot be treated medically. However, the amount of hands-on therapy that patients can receive is limited, as economic pressures are inherent in the health care system. Therefore, worldwide efforts are being made to automate locomotor training. Robotic devices has the potential to make therapy more affordable and thus more available for more patients and for more time. This article reviews the most important characteristics and features of the current robot devices for gait rehabilitation, both in clinical use and in the phase of research.

References

- S. Freivogel, D. Schmalohr, and J. Mehrholz, "Improved walking ability and
reviewed therapeutic stress with an electromechanical gait device, ” Journal of
Rehabilitation Medicine, vol. 41, no. 9, pp. 734–739, 2009.
- G. R. West, ”Powered gait orthosis and method of utilizing same,” Patent
number 6 689 075, 2004.
- J. F. Veneman, R. Kruidhof, Edsko E. G. Hekman, R. Ekkelenkamp, Edwin H. F.
Van Asseldonk, and Herman van der Kooij. Design and Evaluation of the
LOPES Exoskeleton Robot for Interactive Gait Rehabilitation. IEEE
Transactions on Neural systems and rehabilitation engineering, vol. 15, no. 3, september
2007.
Development of a lightweight, underactuated exoskeleton for loadcarrying
augmentation, Proceedings of the 2006 IEEE International Conference on Robotics and
- G. Aguirre-Ollinger, J. Colgate, J. E. Peshkin, M., Goswami, A. 2007,
Active-Impedance Control of a Lower-Limb Assistive Exoskeleton, 2007 IEEE
10th International Conference on Rehabilitation Robotics, The Netherlands, June
2007 in Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation
Robotics, ed Bart Driessen, Just L. Herder, Gert Jan Gelderblom, IEEE, USA, pp. 188-195.
- Seireg A, Grundman JG. Design of a multitask exoskeletal walking device for
paraplegics. In: Ghista DN, ed. Biomechanics of Medical Devices. New York: Marcel Dekker,
- H. Miyamoto, I. Israel, H. Miyamoto, S. Mori, A. Sano, Y. Sakurai. Approach to a powered
orthosis for paralyzed lower limbs. In: ICAR 85 ; 1985 . p . 451-8
- Vukobratovic M., Hristic D., Stojiljkovic Z. Development of active anthropomorphic
exoskeletons. Medical and biological engineering, January 1974, Volume 12, Issue 1, pp
66–80.
- D. Aoyagi, W. Ichinose, H. Harkema, S. Reinkensmeyer, J. Bobrow. A robot and
control algorithm that can synchronously assist in naturalistic motion during body weight
supported gait training following neurologic injury, IEEE Transactions on Neural Systems
- Natasa Koceska, Saso Koceski, Pierluigi Beomonte Zobel and Francesco Durante
- Werning A, Muller S. Laufband locomotion with body weight support improved walking
- Pietrusinski M., Cajigas I., Mizikacioglu Y., Goldsmith M., Bonato P. and Mavroidis C.
Gait Rehabilitation Therapy Using Robot Generated Force Fields Applied at the
Pelvis, Proceedings of the 2010 IEEE Haptics Conference, Waltham, MA, March 25-26,
2010, 401-407.
- K. Ikuta, K. and Nokata, M. Safety evaluation method of design and control for
- Reinkensmeyer D, Wynne J, Harkema S. "A robotic tool for studying locomotor adaptation and rehabilitation"; 2002; Second Joint Meeting of the IEEE EMBS and BMES.

Index Terms

Computer Science
Automation

Keywords
Robotic systems exoskeletons gait rehabilitation locomotor disabilities