Abstract

There are different algorithms for vocal fold pathology diagnosis. These algorithms usually have three stages which are Feature Extraction, Feature Reduction and Classification. While the third stage implies a choice of a variety of machine learning methods, the first and second stages play a critical role in performance and accuracy of the classification system. In this paper we present initial study of feature extraction and feature reduction in the task of vocal fold pathology diagnosis. A new type of feature vector, based on wavelet packet decomposition and Mel-Frequency-Cepstral-Coefficients (MFCCs), is proposed. Also Principal Component Analysis (PCA) is used for feature reduction. An Artificial Neural Network is used as a classifier for evaluating the performance of our proposed method.

References

An ANN-based Method for Detecting Vocal Fold Pathology

Comparative Analysis between Wavelets for the Identification of Pathological Voices.
Proceedings of the 15th Iberoamerican congress conference on Progress in pattern recognition,
image analysis, computer vision, and applications.
for the assessment of vocal fold disorders. Computers in Biology and Medicine, 39, 860-868.
- Fonseca, E., Guido, R. C., Pereira, J. C., Scalassarsa, P. R., Maciel, C. D. and
Pereira, J. C. 2007. Wavelet time frequency analysis and least squares support vector
machines for identification of voice disorders. Computers in Biology and Medicine, 37,
571–578.
Trying different wavelets on the search for voice disorders sorting. Proceedings of the 37th
IEEE International Southeastern Symposium on System Theory, pp. 495–499.
- Umapathy, K. and Krishnan, S. 2005. Feature analysis of pathological speech signals
using local discriminant bases technique. Medical and Biological Engineering and Computing,
43, 457–464.
USING AN ARTIFICIAL NEURAL NETWORK. Transactions on Power Systems, Vol. 7, No. 1,
pp. 124-132.

Index Terms

Computer Science Neural Networks

Keywords

Wavelet Packet Decomposition Mel-Frequency-Cepstral-Coefficient (MFCC)
Principal Component Analysis (PCA)

Artificial Neural Network (ANN)