PCA based temperature controller was used to control Ethanol concentration produced in Yeast fermentation process. The controller was designed at a specific operating point and its disturbance rejection performances were studied. Substrate inlet temperature proved to be the most significant disturbance input from the analysis of open loop responses. Q-statistic (SPE) of process measurements confirmed that in the face of disturbances and noise the process could be held to the specific operating condition using the controller designed in subspace.
- J. E. Jackson, \textquoteleft;A User\textquoteleft;s Guide to Principal Components\textquoteleft;, Wiley, New York, (2003).
- L. B. Palma, F. V. Coito, P. S. Gil, R. Neves-Silva, \textquoteleft;Process Control based on PCA Models\textquoteleft;, 15th IEEE Int. Conf. on Emerging Technologies and Factory Automation, Univ. of the Basque Country, Bilbao, Spain, (2010).
- L. B. Palma, F. V. Coito, P. S. Gil, R. Neves-Silva, \textquoteleft;Design of Adaptive PCA Controllers for SISO Systems\textquoteleft;, 18th IFAC World Congress Milano, Italy, (2011)
- S. L. Shah, R. Miller, H. Takada, K. Morinaga, T. Satou, \textquoteleft;Modelling and control of
Control of Yeast Fermentation Bioreactor in Subspace

Index Terms

<table>
<thead>
<tr>
<th>Computer Science</th>
<th>Control Systems</th>
</tr>
</thead>
</table>

Keywords

Principal Component Analysis bioreactor subspace