Abstract

The inefficient usage of limited radio spectrum resources with its increased demand has opened the doors for an innovative communication technology. The recently proposed concept of cognitive radio network can use the licensed bands of primary users for its data transmission without causing interference to them. The LT (Luby Transform) code and Raptor code, types of Fountain codes (class of erasure correcting codes) seems a promising approach to enhance the performance of wireless multimedia services. Since, the bandwidth usage is minimized with the use of Fountain code; it seems to be optimal to use it for cognitive networks. The paper discusses the work which has applied LT and Raptor coding for MBMS (Multimedia Broadcast/Multimedia Services) and cognitive networks and proposes a solution to further enhance the performance of cognitive radio networks.

References

for Reliable Download Delivery in Wireless Broadcast Systems”
IEEE Communication Society, pp. 192-197.
- C. Bouras, N. Kanakis, V. Kokkinos, A. Papazois 2012 “Enhancing Reliable Mobile Multicasting with RaptorQ FEC”
IEEE, pp. 082-087.
- C. Wu, B. Li 2005 “rStream: Resilient Peer-to-Peer Streaming with Rateless Codes”
ACM.
- Jeff Castura, Yongyi Mao 2006 “Rateless Coding over Fading Channels”
- R. Palanki, J. S. Yedidia 2004 “Rateless codes on noisy channels”
- J. Wagner, J. Chakareshi, P. Frossard 2006 “Streaming of Scalable Video from Multiple Servers Using Rateless Codes”
IEEE, pp. 1501-1504.
- R. D. Raut, K. D. Kulat 2010 “Application Specific Optimal Codec in Cognitive Environment”
- J. Castura, Y. Mao, S. Draper 2006 “On Rateless Coding over Fading Channels with Delay Constraints”
IEEE, pp. 1124-1128.

Index Terms

Computer Science
Wireless

Keywords

Cognitive radio Fountain codes LT (Luby Transform) code Raptor code