Abstract

Today in every field wireless technology is used, for as Medical, Factory Automation, Search, Rescue, etc,. IEEE 802. 11 is an option but infrastructure cost is too high, so the option is IEEE 802. 15. 4, especially Low-Rate Wireless Personal Area Network (LR-WPAN). The low rate WPANs is intended to serve a set of industrial, residential and medical applications with very low power consumption and cost and with relaxed needs for data rate and QoS. The low data rate enables the LR-WPAN to consume very little power. The applications are Integrated Medical Systems, Automatic Traffic Control, Energy Conservation, and many more. In this paper, the impact of Beacon order (BO) and Superframe order (SO) on beacon-enabled IEEE 802. 15. 4 is analyzed. The QoS parameters which are of concern are throughput, packet loss rate, average end-to-end delay and energy consumption.
Impact of BO and SO on Beacon-Enabled IEEE 802. 15. 4

References

- IEEE 802. 15. 4-2006. Part 15. 4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), 2006.
- N. Salles, N. Krommenacker, and V. Lecuire, Performance study of IEEE 802. 15. 4 for industrial maintenance applications, in Proceedings of the IEEE International Conference on Industrial Technology (ICIT '08), pp. 1–6, Chengdu, China, April 2008.
- C. Li, H. B. Li, and R. Kohno, Performance evaluation of IEEE 802. 15. 4 for wireless body area network (WBAN), in Proceedings of the IEEE International Conference on Communications Workshops (ICC '09), pp. 1–5, June 2009.
- J. Liu, I. Demirkiran, T. Yang, and A. Helfrick, Feasibility study of IEEE 802. 15.

Index Terms

Computer Science
Communication Systems

Keywords

WPAN Beacon Order Superframe Order QoS LR-WPAN and Beacon-enabled IEEE 802.15.4.