Abstract

Exponential Tree in the form of forest is proposed in such a manner that- (a) it provides faster access of a node and, (b) it becomes more compatible with the parallel environment. Empirically, it has been show that the proposed method decreases the total internal path length of an Exponential Tree quite considerably. The experiments were conducted by creating three different data structures using the same input- a conventional binary tree, a forest of hashed binary trees and a forest of hashed exponential trees. It has been shown that a forest of hashed exponential trees so produced has lesser internal path length and height in comparison of other two. It also increases the degree of parallelism.

References

- R. Raman "Priority queues: small, monotone and trans-dichotomous"
European Symposium on Algorithms, 1996.
- Y. Han. 2002 "Deterministic sorting in O(n log logn) time and linear space" in 34th STOC.

Index Terms
Computer Science Algorithms

Keywords
Exponential Tree Binary Search Tree Internal Path Length Parallel Processing Balanced Tree