Abstract

Software cost estimation is the process of predicting the effort required to develop a software system. Accurate cost estimation helps us complete the project within time and budget. For completing the project in time and budget, one must have efficient estimation technique for predicting project efforts. Artificial neural network is a promising technique to provide efficient and good results when dealing with problems where there are complex relationship between inputs and outputs. Researchers proved better estimation using back propagation techniques like RBP and Bayesian regulation. In this paper further discussion will be about the study and the efficiency of Neural based one step secant back propagation based cost estimation model, Powell-Beale conjugate gradient model and Fletcher-reeves conjugate gradient model. Result is concluded with the best effort predicting model.

References

- Murali Chemuturi "Analogy based Software Estimation"; Chemuturi
Comparative Analysis of Neural Network Techniques for Estimation

Consultants
- Aarmodt and Plaza (1994), "Case-Based Reasoning: Foundational issues, Methodical Variations and System Approaches." AI Communications
- Carolyn Mair, Gada Kadoda, Martin Lefley, "An Investigation of Machine Learning Based Prediction Systems."
- Ali idri, taghi, M. khoshgoftaar, Alain abran, "Can neural network be easily interpreted in software cost estimation?"

Index Terms

Computer Science Neural Networks
Keywords

software estimation artificial neural networks one step secant BP Powell-beale conjugate gradient

Fletcher-powell conjugate gradient