{
Abstract

Problem Statement: To enhance the pattern discovery process, the multi-level propositional
process work extends the pattern discovery process with coherent rule generation framework.
The multi-level coherent rule structure produce rules coming from diverse levels and determine
highest recurrent item sets at inferior level. The propositional logic process formed the
multilevel connection rules from logical rules and utilizes bottom-up progressive extending
technique. This method develops the effectiveness of rules with minimum support threshold but
takes longer time. Approach: To overcome the above issue, we are going to implement a new
technique termed Logic based pattern discovery using Integral Logical Derivative Rules (ILDR).
This technique is used to efficiently produce the rule with the short span of time. Results:
Performance of Integral Logical Derivative Rules technique to discover the logic based pattern
is evaluated in terms of execution time, support threshold based on number of items and
memory consumption for pattern discovery. Conclusion: Logical based pattern discovery
considers the problem of minimum support threshold. An analytical and empirical result shows
the lesser execution time with the efficient integral based pattern discovery of our proposed
scheme.

Refer}
Logic based Pattern Discovery using the Integral Logical Derivative Rule

- J. Malar Vizhi, and Dr. T. Bhuvaneswari, "Data Quality Measurement With Threshold Using Genetic Algorithm International Journal of Engineering Research and Applications (IJERA), 2012
- Alex Tze Hiang Sim et. Al., 'Logic based pattern discovery', IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 6, JUNE 2010
- Nittaya, kittisak kerdprasop, "The Discovery of Frequent Patterns with Logic and Constraint Programming, Recent Researches in Computational Techniques, ISBN: 978-1-61804-011-4, 2010
- Ning Zhong, Yuefeng Li, Sheng-Tang Wu, "Effective Pattern Discovery for Text Mining," IEEE Transactions on Knowledge and Data Engineering, 2012
- Kyriacos E. Pavlou, and Richard T. Snodgrass, "The Tiled Bitmap Forensic Analysis Algorithm." IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 4, APRIL 2010
- Weifeng Su, Jiying Wang, and Frederick H. Lochovsky, "Record Matching over Query Results from Multiple Web Databases," IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 4, 2010
- Yuzhe Tang, Shuigeng Zhou, and Jianliang Xu, "LIGHT: A Query-Efficient Yet Low-Maintenance Indexing Scheme over DHTs," IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, 2010
- Feng Qian, Qinming He, Kevin Chiew, Jiangfeng He, "Spatial co-location pattern discovery without thresholds," Knowledge and Information Systems, Volume 33, Issue 2, pp 419-445, November 2012
- Jyoti Jadhav, Lata Ragha, Vijay Katkar, "Incremental Frequent Pattern Mining," International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-1, Issue-6, August 2012

Index Terms

Computer Science

Information Sciences
Keywords
Pattern discovery Derivative rules Integral based pattern support threshold data mining
mining methods