Abstract

Spatial data mining practice for the extraction of useful information and knowledge from massive and complex spatial database. Most research in this area has focused on efficient clustering algorithm for spatial database to analyze the complexity. This paper introduces an active spatial data mining approach that extends the current spatial data mining algorithms to efficiently support user-defined triggers on dynamically evolving spatial data. It shows that spatial data mining is a promising field, with fruitful research results and many challenging issues.

References

- K. Alsabti, S. Ranka, and V. Singh, 8An Efficient k-means Clustering Algorithm,9 Proc. First Workshop High Performance Data Mining, Mar. 1998
- P. S. Bradley, U. Fayyad, and C. Reina, \textquoteleft Scaling Clustering Algorithms to
Clustering Algorithm for Spatial Data Mining: An Overview

Large Databases; Proc. 4th International Conf. on Knowledge Discovery and Data Mining (KDD-98). AAAI Press, Aug. 1998
- M. S. Chen, J. Han, and P. S. Yu. Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6):883, 1996.
- Krzysztof Koperski, Junas Adhikary, JiaweiHan. Spatial Data Mining: Progress and Challenges Survey Paper. Workshop on Research Issues on Data Mining and Knowledge Discovery, 1996
- G. Milligan and M. Cooper, "An Examination of Procedures for Determining the Number of Clusters in a Data Set," Psychometrika, vol. 50, pp. 159–179, 1985
- Raymond T. Ng and Jiawei Han, CLARANS: A Method for Clustering Objects for Spatial Data Mining, IEEE TRANSACTIONS ON KNOWLEDGE and DATA ENGINEERING, Vol. 14, No. 5.

Index Terms

Computer Science
Algorithms
Keywords
Spatial data mining Spatial database K-mean Spatial relationship Datamining