Abstract

The purpose of this paper is to Provide the information regarding Diabetic retinopathy, its imaging methods and data base in systematic manner. In this paper we Introduce the terms related to Diabetic Retinopathy along with the characteristic and features of appearance in the images. In this paper we also discuss the various image acquisition techniques of retina from fundus photography to 3D OCT Imaging. Lastly we also provide the list of the current data base available with the ground truth. In Diabetic retinopathy the blood vessel becomes weak and due to this vessel leaks blood and fluid of lipoproteins, this creates abnormalities in retina. Abnormal retinal images form four different classes namely non-proliferative diabetic retinopathy (NPDR), Central retinal vein occlusion (CRVO), Choroidal neovascularisation membrane (CNVM) and central serous retinopathy (CSR). There may exist different kinds of abnormal lesions caused by diabetic retinopathy in a diabetic’s eye. The lesion types are, Microaneurysm, Hard Exudate, Soft Exudate, Hemorrhage, and Neovascularization.

References

- Tekes, national technology agency of Finland. Website (referenced 20th
Review on Fundus Image Acquisition Techniques with Data base Reference to Retinal Abnormalities in Diabetic Retinopathy

- Diabetesliitto: Perustietoa diabeteksestä. Website (referenced 3th February 2005).
- Diabetesliitto: Diabetes Suomessa. Website (referenced 3th February 2005).
2002.
 - Chanjira Sinthanayothin, Viravud Kongbunkiat, Suthee Phoojaruenchanachain, and
 Apichart Singlavanija. Automated screening system for diabetic retinopathy. In Proceedings of
 - G. G. Gardner, D. Keating, T. H. Williamson, and A. T. Elliot. Automatic detection of
 diabetic retinopathy using an articial neural network: a screening tool. British Journal of
 - Bernhard M. Ege, Ole K. Hejlesen, Ole V. Larsen, Karina Moller, Barry Jennings, David
 Kerr, and David A. Cavan. Screening for diabetic retinopathy using computer based image
 - Huan Wang, Wynne Hsu, Kheng Guan Goh, and Mong Li Lee. An effective approach to
 detect lesions in color retinal images. In IEEE Conference on Computer Vision and Pattern
 - Kheng Guan Goh, Wynne Hsu, Mong Li Lee, and Huan Wang. Adris: an automatic
 diabetic retinal image screening system. Medical Data Mining and Knowledge Discovery, pages
 - Huiqi Li and Opas Chutatape. Automated feature extraction in color retinal images by a
 model based approach. IEEE Transactions on Biomedical Engineering, 51:246–254, February
 2004.
 - Nicholas P. Ward, Stephen Tomlinson, and Christopher J. Taylor. Image analysis of
 - Russell Phillips, John Forrester, and Peter Sharp. Automated detection and
 quantification of retinal exudates. Graefe’s Archive for Clinical and Experimental
 - Wynne Hsu, P. M. D. S. Pallawala, Mong Li Lee, and Kah-Guan Au Eong. The role of
 domain knowledge in the detection of retinal hard exudates. In IEEE Conference on Computer
 Vision and Pattern Recognition (CVPR), pages 246–251, Kauai Marriott, Hawaii, December
 - Alireza Osareh. Automated Identification of Diabetic Retinal Exudates and the Optic
 - Alireza Osareh, Majid Mirmehdi, Barry Thomas, and Richard Markham. Comparative
 exudate classification using support vector machines and neural networks. In 5th International
 Conference on Medical Image Computing and Computer-Assisted Intervention, pages 413–420,
 Springer LNCS 2489, September 2002.
 Soliz. The effects of spatial resolution on an automated diabetic retinopathy screening
 system’s performance in detection microaneurysms for diabetic retinopathy. In Proceedings of
 - M. J. Cree, J. A. Olson, K. C. McHardy, J. V. Forrester, and P. F. Sharp. Automated
 - Mohamed Kamel, Saeid Belkassim, Ana Maria Mendonca, and Aurélio Campilho. A
 neural network approach for the automatic detection of microaneurysms in retinal angiograms.

- Michael D. Abràmoff, , Mona K. Garvin, Milan Sonka, Fellow Retinal Imaging and Image Analysis Clinical Applications Review ieee reviews in biomedical engineering, VOL. 3, 2010
- H. L. F. von Helmholtz, Beschreibung eines Augen-Spiegels. :A. Farstnerische
Review on Fundus Image Acquisition Techniques with Data base Reference to Retinal Abnormalities in Diabetic Retinopathy

- O. Gerloff, "Uber die Photographie des Augenhiintergrundes," KlinMonatsblätter Augenheilkunde, vol. 29, pp. 397–403, 1891

Index Terms

Computer Science Image Processing

Keywords

DiabeticRetinopathy Ground truth Fundus