Abstract

A novel environment for optimization, analytics and decision support in general engineering design problems is introduced. The utilized methodology is based on reactive search optimization (RSO) procedure and its recently implemented visualization software packages. The new set of powerful integrated data mining, modeling, visualization and learning tools via a handy procedure stretches beyond a decision-making task and attempts to discover new optimal designs relating to decision variables and objectives, so that a deeper understanding of the underlying problem can be obtained. In an optimal engineering design environment as such solving the multicriteria decision-making (MCDM) problem is considered as a combined task of optimization and decision-making. Yet in solving real-life MCDM problems often most of attention has been on finding the complete Pareto-optimal set of the associated multiobjective optimization (MOO) problem and less on decision-making. In this paper, along with presenting two case studies, the proposed interactive procedure which involves the decision-maker (DM) in the process addresses this issue effectively. Moreover the methodology delivers the capability of handling the big data often associated with production decision-making as well as materials selection tasks in engineering design problems.
A Multicriteria Decision Making Environment for Engineering Design and Production Decision-Making

- Mosavi, A. 2010. On Engineering Optimization the Splined Profiles"ing; International modeFRONTIER Users"ing; Meeting, Trieste, Italy.
optimization,

- Deb, K. and Gupta, H. 2005. Searching for robust Pareto-optimal solutions in multi-objective optimization,

- Mosavi, A., Azodinia, M., Milani, A. S., Hewage, K. N. and Yeheyis, M. 2011. Reconsidering the Multiple Criteria Decision Making Problems of Construction Workers With the aid of Grapheur,

- Jones, C. V. 1994 Feature Article–Visualization and Optimization,

- Piero, P., Subbu, R., Lizzi, J. 2009. MCDM: A framework for research and applications,

- Battiti, R., Brunato, M., and Mascia, F. 2008 Reactive Search and Intelligent Optimization,

- Adejuwon, A and Mosavi, A. 2010. Domain Driven Data Mining; Application to Business,

- Mosavi, A. 2010 Multiobjective Optimization of Spline Curves using modeFRONTIER®, International modeFRONTIER Users®aposs; Meeting, Trieste, Italy.

- Chambers, J. and Barnes, J. 1996. New tabu search results for the job shop scheduling problem"s; The University of Texas, Austin, TX, Technical Report Series ORP96-06, Graduate Program in Operations Research and Industrial Engineering.

- Potocnik, P. and Grabec, I. "s;Adaptive self-tuning neurocontrol"s; Mathematics and Computers in Simulation 51(3-4), 201–207.

of the 7th EU/MEeting on Adaptive, Self-Adaptive, and Multi-Level Metaheuristics, malaga, Spain, 2006.
- Mosavi, A. 2013, Data mining for decision making in engineering optimal design, Journal of Artificial Intelligence & Data Mining, V1.
- Geoffrion, A. M. 1976 The purpose of mathematical programming is insight, not numbers. Interfaces, 7, pp. 81–92.
- Mosavi, A. 2010 Multiobjective optimization package of IOSO, 24th Mini EURO Conference on Continuous Optimization and Information-Based Technologies in the Financial Sector, Izmir, Turkey.
- Mosavi, A. Hoffmann, M. and Peter, N. 2009 Automatic multi-objective surface design optimisation using modeFRONTIER’s CAD/CAE integrated system: Application to military submarine sail EnginSoft International Conference and ANSYS Italian Conference, Bergamo, Italy.

Index Terms

Computer Science

Decision Support
Keywords
Optimal engineering design interactive multicriteria decision making reactive search optimization
multiobjective optimization