Abstract

Locality Sensitive Hashing (LSH) is an index-based data structure that allows spatial item retrieval over a large dataset. The performance measure, β, has significant effect on the computational complexity and memory space requirement to create and store items in this data structure respectively. The minimization of β at a specific approximation factor c, is dependent on the load factor, β_l. Over the years, $\beta_l=\frac{1}{4}$ has been used by researchers. In this paper, we demonstrate that the choice of $\beta_l=\frac{1}{4}$ does not guarantee low computational complexity and low memory space of the data structure under the LSH scheme. To guarantee low computational complexity and low memory space, we propose $\beta_l=\frac{1}{5}$. Experiments on the Defense Meteorological Satellite Program imagery dataset have shown that $\beta_l=\frac{1}{5}$ saves more than 75% on memory space; cuts the computational complexity by more than 70%; and answers query two times faster on the average compared to that of $\beta_l=\frac{1}{4}$.

References

Index Terms

Computer Science Algorithms

Keywords
Approximate Nearest Neighbor Exact Nearest Neighbor ApproximationFactor
Performance Measure
Optimal Load Factor