Abstract

Locality Sensitive Hashing (LSH) is an index-based data structure that allows spatial item retrieval over a large dataset. The performance measure, ℓ, has significant effect on the computational complexity and memory space requirement to create and store items in this data structure respectively. The minimization of ℓ at a specific approximation factor c, is dependent on the load factor, ℓ^*. Over the years, $\ell^*=4$ has been used by researchers. In this paper, we demonstrate that the choice of $\ell^*=4$ does not guarantee low computational complexity and low memory space of the data structure under the LSH scheme. To guarantee low computational complexity and low memory space, we propose $\ell^*=5$. Experiments on the Defense Meteorological Satellite Program imagery dataset have shown that $\ell^*=5$ saves more than 75% on memory space; cuts the computational complexity by more than 70% and answers query two times faster on the average compared to that of $\ell^*=4$.

References
Optimal Load Factor for Approximate Nearest Neighbor Search under Exact Euclidean Locality Sensitive Hashing

Yao, A. C. , and Yao, F. F. 1985. "A general approach to d-dimensional geometric queries," in Proceedings of the seventeenth annual ACM symposium on Theory of computing, Providence, Rhode Island, United States, pp. 163-168.

Index Terms

Computer Science
Algorithms

Keywords

Approximate Nearest Neighbor
Exact Nearest Neighbor
Approximation Factor
Performance Measure

Optimal Load Factor