Abstract

Locality Sensitive Hashing (LSH) is an index-based data structure that allows spatial item retrieval over a large dataset. The performance measure, β, has significant effect on the computational complexity and memory space requirement to create and store items in this data structure respectively. The minimization of β at a specific approximation factor c, is dependent on the load factor, α. Over the years, $\beta=4$ has been used by researchers. In this paper, we demonstrate that the choice of $\beta=4$ does not guarantee low computational complexity and low memory space of the data structure under the LSH scheme. To guarantee low computational complexity and low memory space, we propose $\beta=5$. Experiments on the Defense Meteorological Satellite Program imagery data set have shown that $\beta=5$ saves more than 75% on memory space; cuts the computational complexity by more than 70%; and answers query two times faster on the average compared to that of $\beta=4$.

References
- Beyer, K. S., Goldstein, J., Ramakrishnan, R., and Shaft, U. 1999. "When Is 'apos;'apos;Near Neighbors'apos;'apos;'apos; Meaningful?,'apos;apo

Index Terms

- Computer Science
- Algorithms

Keywords

- Approximate Nearest Neighbor
- Exact Nearest Neighbor
- ApproximationFactor
- Performance Measure

Optimal Load Factor