Abstract

Orthogonal Frequency Division Multiplexing (OFDM) is a popular method for high data rate wireless transmission. OFDM may be combined with antenna arrays at the transmitter and receiver to increase the diversity gain and/or to enhance the system capacity on time-variant and frequency-selective channels, resulting in a Multiple-Input Multiple-Output (MIMO) configuration. To investigate the performance of MIMO-OFDM system, its physical layer is simulated using MATLAB and Bit Error Rate (BER) performance is observed. Further performance improvement is achieved using Forward Error Correction (FEC) codes. The goal of this paper is to compare different FEC codes in Additive White Gaussian Noise (AWGN) and Rayleigh fading channel and propose a suitable code for MIMO-OFDM system. Three codes, Reed Solomon-Convolution Code (RS-CC), Convolutional Turbo Code (CTC) and Low Density Parity Check code (LDPC) are considered for this purpose. It is found that CTC gave a coding gain of 0. 2dB and 0. 25dB than its rival LDPC in AWGN and Rayleigh fading channel respectively.
Forward Error Correction Code for MIMO-OFDM System in AWGN and Rayleigh Fading Channel

- Wen-an Zhou; Bing Xie; Jun-de Song, "Link-level Simulation and Performance Estimation of WiMAX IEEE802. 16e"; 2nd International Conference on Pervasive Computing and Applications, Page(s):667 – 671, July 2007

Index Terms

Computer Science
Signal Processing

Keywords
BER FEC RS-CC CTC LDPC MIMO-OFDM