Abstract

Reliability importance of a component is a quantitative measure of the importance of the individual component in contributing to system reliability. In this paper, an appropriate Markov chain imbedding technique is employed to obtain the reliability of an multi-state m-consecutive-at least-k-out-of-n: F systems when the system components are independently functioning with not necessarily equal reliability. Finally, an illustrative example is given.

References

On the Reliability of Multi-State m-consecutive-at least-k-out-of-n: F Systems

75–77.
- Spiros, D. D. , Frosso S. M. and Zaharias M. P. , "On the reliability of consecutive systems," Proceedings of the World Congress on Engineering(WCE), Vol. 3, June 30 -
On the Reliability of Multi-State m-consecutive-at least-k-out-of-n: F Systems

July 2,(2010), London, U. K.
- Zhao, X. , Cui, L. R. , Zhao W. and Liu F. , "Exact reliability of a linear connected-(r, s)-out-of-(m, n): f system," IEEE Transactions on Reliability, vol. 60, (2011), pp. 689–698.

Index Terms

Computer Science
Applied Mathematics

Keywords
Reliability Multi-state Markov chain imbedding Consecutive systems