Abstract

In Electrical Impedance Tomography (EIT), the resulting voltages developed by injecting a constant electrical current at the boundary electrodes are used to obtain images representing conductivity. Electrical Impedance and Diffused Optical Reconstruction Software (EIDORS) is used in this tomographic imaging. This paper compares different reconstruction algorithms used in EIT experiments conducted on a circular plastic phantom. Priors like Noser, Laplace, Tikhonov, Total Variation (TV) and Gauss-Newton and Back Projection algorithms are used for detection of nonconducting impurity. The images thus obtained are compared with respect to shape and size of impurity and perseverance of image contrasts.

References

- Bera T. K and Nagaraju J., "Resistivity Imaging of a reconfigurable phantom with..."

- Erwati M. T, and Farrukh N , Applications of electrical impedance tomography for imaging in biomedical and material technology " Proceedings of 2009 IEEE Students Conference on research and development, Nov '09.

- Nicholas Polydorides, "Image Reconstruction Algorithms for Soft-field tomography" Manchester, United Kingdom, September 2002.

- Vidya Sarode, Priya M. Chimurkar, Alice N Cheean, "Electrical Impedance Tomography using EIDORS in a Closed Phantom" International Journal of Computer Applications (0975 – 888), Volume 48– No. 19, June 2012.

- Tushar Kanti Bera and J. Nagaraju, "A Study of Practical Biological Phantoms with Simple Instrumentation for Electrical Impedance Tomography (EIT)" I2MTC, Singapore, 5-7 May 2009.

- Bera T. K and Nagaraju J., "Studying the resistivity imaging of chicken tissue phantoms with different current patterns in Electrical Impedance Tomography (EIT)" Measurement (2012), doi:10. 1016/j. measurement . 2012. 01. 002.

Index Terms

Computer Science

Algorithms
Keywords
Priors Regularization Impurities Jacobian