Abstract

The software cost estimation is now one of centre of attention for computer software industries. As software industry runs many projects simultaneously they have to prioritize different processes based on time, cost, and number of staff, sequentially. With the increasing complexity of software, the cost of the software development is also increasing. So it is required to rely on the effective techniques for estimating software costs. Accurate cost estimation is needed because it can help to prioritize and classify development projects. In this paper, the most popular software cost estimation model, COCOMO II (post architecture model of COCOMO), is discussed. The estimation of COCOMO II is enhanced through neural network. The network is trained trough perceptron learning rule. The company's previous projects dataset of estimation and actual cost can be used to train the network. The cost estimation result of COCOMO II is compared with trained network.

References

Proposing Effort Estimation of COCOMO II through Perceptron Learning Rule

- Bradford Clark, Sunita Devnani-Chulani, Barry Boehm., "Calibrating the COCOMO II Post-Architecture Model&quo;
- N. Kassabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering&quo;
- D. E. Neumann, "An Enhanced Neural Network Technique for Software Risk Analysis&quo;
- Ch. Satyananda Reddy and KVSVN Raju, "An Optimal Neural Network Model for Software Effort Estimation&quo;
- Jorgerson, M., "Experience with accuracy of software maintenance task effort prediction models&quo;
- IEEE Transactions on Software Engineering, Volume 21 (8), 674–681,
1995.

Index Terms

Computer Science Neural Networks

Keywords

Software cost estimation neural network COCOMO II perceptron learning