Abstract

In this paper, two general architectures of Carry Select Adder (CSA) have been introduced for high speed addition. These CSA architectures utilize the hybridized structure of Carry Lookahead Adder (CLA) and Ripple Carry Adder (RCA). In these architectures the critical path delay has been reduced by reducing the number of multiplexer stages. The proposed designs are compared with regular CSA based on RCA. The second architecture showed 11.3%, 3.9% improvement in delay and an overhead of 13% in area.

References

- R. E. Ladner, M. J. Fischer, "Parallel Prefix Computation," JACM,
A Novel Ripple/Carry Lookaheads Hybrid Carry Select Adder Architecture

- P. M. Kogge, H. S. Stone; 'A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations' IEEE Trans., C-22(8):786-793, Aug. 1973
- T. Han, D. A. Carlson; 'Fast Area-Efficient VLSI Adders' 8th IEEE Symp. Computer Arithmetic, Como Italy, pp. 49-56, May 1987
- Yuke Wang, C. Pai, and Xiaoyu Song,' The Design of Hybrid Carry-Lookahead/Carry–Select Adders;', IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 49, NO. 1, JANUARY 2002
- Yajuan He, Chip-Hong Chang and Jiangmin Gu,' An Area Efficient 64-bit Square Root Carry-select Adder for Low Power Applications;', IEEE, 2005.
- B. Ramkumar and Harish M Kittur.' Low-Power and Area-Efficient Carry Select Adder;'. IEEE Transaction on VLSI systems, 2011.

Index Terms
Computer Science Architecture

Keywords
Carry Select Adder Carry Lookahead Adder Ripple Carry Adder hybrid Adder