Effect of Physical Layer Limitations on the MAC Layer Capacity of Mobile WiMAX System, Analysis and Simulation

Abstract

In this paper, the effect of physical layer limitations on the MAC layer capacity of mobile WiMAX system is analyzed mathematically. The downlink physical layer simulation results show the best burst profiles for a mobile WiMAX system working in a multipath fading channel under the Quality of Service (QoS) requirements for video streaming applications. The capacity mathematical results are obtained based on the physical layer constraints after discarding the MAC layer overheads. Then, a complete simulation model for physical and MAC layers are built to validate the capacity analytical results. The simulation results show a good degree of convergence between the analytical and simulation capacity results. Also, the results show that the maximum number of users that can be served instantaneously by the BS are different depends on the used distributed subcarrier permutation mode.

References

Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1.

- S. E. Abdul Fatah; S. A. Mawjoud; Mobile WiMAX: System Performance in Terms of Distributed and Adjacent Subcarrier Permutation Modes in ITU-R Vehicular A Channel; IEEE International Conference on Future Communication Networks (ICFCN), Baghdad, pp. 41-46, 2012.
- B. Kim; J. Yun; Y. Hur; P. America; C. So-In; R. Jain, and A. Al Tamimi; Capacity Estimation and TCP Performance Enhancement over Mobile WiMAX Networks; IEEE Communications Magazine, June 2009.
- B. G. Lee; S. Choi; Broadband Wireless Access and Local Networks Mobile WiMAX and WiFi; Artech House, USA, 2008.
- K. Balachandran; D. Calin; F. Cheng; N. Joshi; J. H. Kang, and J. Sun; Design and Analysis of an IEEE 802.16e-Based OFDMA Communication System; Bell Labs Technical Journal, Vol. 11, No. 4, pp. 53–73, 2007.
- WiMAX Forum; WiMAX System Evaluation Methodology V2.1; Jul. 2008.

Index Terms

Computer Science
Wireless

Keywords
Mobile WiMAX physical layer MAC layer PUSC FUSC ITU-R mixed users QoS
channel model