Abstract

Data transmission over a communication channel is prone to a number of factors that can render the data unreliable or inconsistent by introducing noise, crosstalk or various other disturbances. A mechanism has to be in place that detects these anomalies in the received data and corrects it to get the data back as it was meant to be sent by the sender. Over the years a number of error detection and correction methodologies have been devised to send and receive the data in a consistent and correct form. The best of these methodologies ensure that the data is received correctly by the receiver in minimum number of retransmissions. In this paper performance of Reed Solomon Code (RS) and BCH Code is compared over Rayleigh fading channel.

References

- Hank Wallace, "Error detecting and correcting using BCH codes", Copyright (C) 2001 Hank Wallace.
Performance Comparison of Reed Solomon Code and BCH Code over Rayleigh Fading Channel

- Shih-Ming Yang and Vinay Anant Vaishampayan, "Low-Delay Communication for Rayleigh Fading Channels: An Application of the Multiple Description Quantizer".
- J Grolleau, D. Labarre, E. Grivel and M. Najim, "The stochastic sinusoidal model for Rayleigh fading channel simulation".

Index Terms

Computer Science Communications

Keywords
RS Code BCH Code Rayleigh Fading Channel Modulation