Abstract

Voltage Stability is a key factor for the stable operation of grid connected wind farm during fault through and grid disturbances. This paper investigates the implementation and comparison of FACTS devices like STATCOM and SVC for the voltage stability issue for IG-based wind farm connected to a grid and load. The steady state behaviour of an interconnected IG based wind farm with STATCOM and SVC is studied and compared for performance evaluation of the two FACTs devices. The power system model is simulated in MATLAB / SIMULINK and the results show that the STATCOM is better than SVC for the stable operation of wind turbine generator system to remain in service during grid faults.

References

- B. Pokharel and Wenzhong Gao, ?Mitigation of disturbances in DFIG-based wind farm connected to weak distribution system using STATCOM,? in Proc. IEEE North American Power
- B. Sookananta, S. Galloway, G. M. Burt and J. R. McDonald, ?The Placement of FACTS Devices in Modern Electrical Network?, UPEC, 2006
- Global Wind Energy Council (GWEC) "US and China in Race to the Top of Global Wind Industry" News dated 02/02/2009, Anxx. –Tables and Graphs (online) available www. gwec. net.
- "Ministry of New and Renewable Energy (MNRE)", Govt. of India, official
Index Terms

Computer Science
Electronics

Keywords

Dynamic Performance Induction Generator FACTs Power System Stability
Matlab/Simulink

Transient Stability
Wind Power Plant