Abstract

Nanotechnology offers many societal benefits and this have prompted the rapid growth of engineered nanomaterials. Fullerene (C60) due to its unique properties has become an important nanomaterial in biomedical and biotechnological applications. Once in water, Fullerene forms stable suspended aggregates and thus become bioavailable to aquatic biota. The fate and transport of fullerene in the aquatic environment is poorly understood. Little data are available on the molecular interactions of fullerene with native proteins of zebra fish (Daniorerio) which is a universally accepted experimental model. In this study, we made an attempt to assess the binding mode of fullerene with two key zebrafish proteins viz. Prostacyclin synthase (cytochrome P450 8A1) and S-100Z Calcium binding protein using Autodock 4.0. The data indicates that Fullerene potentially binds to the active sites of both the
proteins and this may induce conformational changes in the native protein structure thereby altering the function, which might have a toxic effect to fish in survival. Further in vivo studies are required to evaluate the toxic impact on the expression and function of above proteins.

References

S100Z: Implications for Calcium-Promoted S100 Protein Oligomerisation. Journal of molecular biology, vol411 issue 5, 2 September 2011 1072- 1082.
 - Adrian J. Hill, Hiroyuki Teraoka, Warren Heideman,, and Richard E. Peterson1, Zebrafish as a Model Vertebrate for Investigating.
 - Yi-Ching Li , Chia-Wang Chang, Hui-Chun Yeh , Pei-Yung Hsu, Frank G. Whitby,
Lee-Ho Wang and Nei-Li Chan, Structures of Prostacyclin Synthase and Its Complexes with Substrate Analog and Inhibitor Reveal a Ligand-specific Heme Conformation Change. The journal of biological chemistry vol 283 no 5 pp 2917-2926 february 1, 2008.

Index Terms

Computer Science Bioinformatics

Keywords

Fullerene (C60) Prostacyclin synthase S-100Z Calcium binding protein Docking

Autodock 4.0