Abstract

Human Computer Interaction (HCI) is an emerging technology. Eye gaze technique is one of the very significant techniques of HCI and can be used as hands free pointing tool enabling hands-free operation of the display for the user. The important advantage in using eye gaze systems is that the user can communicate from a distance, and there is no requirement of physical contact with the computer. Investigation of eye gaze helps to understand various aspects of the user like attention, intention, desire and area of interest etc. The eye gaze detection techniques can be classified on the basis of direct eye detection, appearance, template, shape, feature, motion, hybrid, regression, 3D methods etc. There are significant factors like shape and size of the object, distance from the subject, texture, light conditions, colour, orientation, head movement, calibration which may influence and affect the efficiency and effectiveness of the eye gaze detection. The use of the gaze as a human computer interface in different fields is an example of high end applications of these techniques. Eye detection is being used in many real time and interactive high end applications. These include the tracking and analyzing of driver’s behaviour with the head pose detection. It is being used for assessing consumer’s shopping behaviour, pointing and selection, activating commands and combinations with other pointing devices, in surgical and medical applications. Moreover eye gaze techniques are also useful for designing and development of various
Eye Gaze Techniques for Human Computer Interaction: A Research Survey

devices especially for differently abled users. In this paper an extensive research survey has
been carried out to understand and analyze the study of various eye gaze techniques,
algorithms and models. On the basis of survey of various techniques of eye gaze, a general
overview of different phases of eye gaze processing has been presented. Certain technical
factors have been identified that are significant and relevant for the working of the models. In
the literature survey a number of parameters that are significant for estimation, detection, better
efficiency and accuracy of eye gaze techniques have been studied and analysed. A
comparison and analytical discussion of different eye gaze techniques and models have been
presented. The analysis and classification of the models shall be helpful for further
improvement and optimization in the performance and accuracy of eye gaze techniques.

References

Human-Computer Interaction, In ACM SIGCHI Curricula for Human-Computer Interaction,
Chapter 2, 5-6.
Lawrence Erlbaum Associates Inc., 393.
Human-computer interaction research in the MIS discipline. Comm. of the AIS, 9, 20, 334–355.
- Orman, Z., Abdulkadir, B., and Kemer, D. 2011. A Study on face, eye detection and
gaze estimation. IJCSES, 2, 3, 29-46.
- Corcoran, P., Nanu, F., Petrescu, S., and Bigioi, P. 2012. Real-Time Eye Gaze
Electronics, 58, 2, 347-355, IEEE.
hands pose estimation: A review. Computer Vision and Image Understanding, 108, 52–73,
Elsevier Inc.
- Kinoshita, K., Ma, Y., Lao, S., and Kawade, M. 2006. A Fast and Robust 3D Head
Pose and Gaze Estimation System. ICMI, ACM.
- Perez, A., Cordoba, M. L., Garcia, A., Mendez, R., Munoz, M. L., Pedraza, J. L.,
Of WSCG Posters.
Perceptual impairment and psychomotor control in virtual laparoscopic surgery. Surg. Endo.,
Springer, 25, 2268-2274.
on Biomedical Circuits and Systems, 4, 2, 125-132.
An Eye-Detection Sensor. Computer Vision and Image Understanding, 98, 104–123, Published
Eye Gaze Techniques for Human Computer Interaction: A Research Survey

by Elsevier Inc.
- Yagi, T. 2010. Eye-gaze Interfaces using Electro-oculography (EOG), EGIHMI, ACM.

- Buscher, G., Biedert, R., Heinrich, D., and Dengel, R. 2010. Eye Tracking Analysis of Preferred Reading Regions on the Screen. CHI, ACM.

Index Terms

Computer Science

Information Sciences
Keywords
Eye gaze techniques and models feature based classification and comparison phases
gaze detection and estimation