Abstract

In this paper, a study of quadratic transformations under Cohen’s class is presented, to see the variations in resolution for performing time-frequency analysis of signals. The study concentrated on the analysis of linear chirp signals and non-stationary signals in presence of noise as well as without noise. The resolutions based on Wavelet Transform, Short Time Fourier Transform are analysed. The effects of widow length, wavelet scale and presence of noise are researched and analyzed against the performance of different time-frequency representations. The Cohen’s class is a class of time-frequency quadratic energy distributions which are covariant by translations in time and in frequency. This important property by the members of Cohen’s class makes those representations suitable for the analysis and detection of linear as well as transient signals. Spectrogram, the squared modulus of Short Time Fourier Transform is considered to be an element of Cohen’s class since it is quadratic and also co-variant in time and frequency. Wigner Ville Distribution is another member of Cohen’s class which can be extended to many other variants by changing the kernel functions used for cross-term reductions. The trade-off in the time-frequency localization are studied and demonstrated with the help of different plots. The result of this study can be
applied to enhance the detection and analysis of signals and to develop efficient algorithms in
medical diagnosis as well as defense applications.

References

- François Auger, Patrick Flandrin, Paulo Gonçalvès, Olivier Lemoine, Tutorial - Time
 Frequency Toolbox for use with MATLAB, 1996
- Azeemsha Thacham Poyil, Shadiya Alingal Meethal, "Cross-term Reduction Using
 2012
- N. Zaric, N. Lekic, and S. Stankovic, "An implementation of the L-estimate
 distributions for analysis of signals in heavy-tailed noise," IEEE Transactions on
- G. Yu; S. Mallat, and E. Bacry, "Audio denoising by time-frequency block
 1830-1839.
- Y. S. Wei and S. S. Tan, "Signal decomposition of HF radar maneuvering targets
 by using S2-method with clutter rejection," Journal of Systems Engineering and
- Y. C. Jiang, "Generalized time–frequency distributions for multi-component

- Yictor Sucic and Boualem Boashash, "Optimization Algorithm for Selecting
 Quadratic Time-frequency Distributions: Performance Results and Calibration,"
 International Symposium on Signal Processing and its Applications (ISSPA), Kuala Lumpur,
 Malaysia, 2001
- Daniel Mark Rosser, "Time-Frequency Analysis of a Noisy Career Signal," Naval Post
 Graduate School Monterey, California, 1996
- Boualem Boashash, "Time-Frequency Signal Analysis and Processing – A
 Comprehensive Reference," Queensland University of Technology, Brisbane, Australia,
 2003
- Juan D Martínez-Vargas, Juan I. Godino-Llorente, and German
 Castellanos-Domínguez, "Time–frequency based feature selection for discrimination of
 non-stationary biosignals," EURASIP 2012
- Ervin Sejdic, Igor Djurovic and Jin Jiang, "Time-Frequency Feature Representation
 Using Energy Concentration: An Overview of Recent Advances," ScienceDirect, Digital
- H. Zou, Q. Dai, R. Wang, and Y. Li, "Parametric TFR via windowed exponential

- Hongxing Zou, Dianjun Wang, Xianda Zhang, Yanda Li, "Nonnegative
 time–frequency distributions for parametric time–frequency representations using semi-af?ne

- Time-series analysis in marine science and applications for industry, 17– 21 September 2012 – Logonna-Daoulas, France

Index Terms

Computer Science

Networks

Keywords

Wavelet Transform (WT) Scalogram Short Time Fourier Transform (STFT) Fast Fourier Transform (FFT)

Wigner Ville Distribution (WVD)

Cohen's Class

Spectrogram