Abstract

Digital age today has shown increasing reliance on digital media and rapid distribution of digital contents. The issues of piracy and copyright are of immense concern in this exponentially increasing digital revolution. In this paper, authors propose use of bi-orthogonal wavelet transform as an effective tool to address copyright infringement issues. A synergistic combination of bi-orthogonal wavelet transform, human visual system characteristics and fuzzy inference system is arrived at to develop a novel adaptive image watermarking scheme. Logo watermark is used to prove ownership of digital property. A hierarchical data structure is generated using bi-orthogonal wavelet decomposition to represent an image. The reconstruction of image is achieved by computing inverse wavelet transform of modified wavelet coefficients. The unique feature of the proposed scheme is that fuzzy inference system is used to effectively establish relation between different HVS characteristics and adaptively adjusting embedding strength of watermark.

References

- Santi P. Maity and Seba Maity, "Multistage Spread Spectrum Watermark Detection
Bi-orthogonal Wavelet based Adaptive Image Watermarking using Human Visual System and Fuzzy Inference

- Wei Cao, Yixin Yan, Shengming Li, Robust Image Watermarking Based on Singular Value Decomposition in DT-CWT Domain; IEEE International Workshop on Imaging Systems and Techniques, IST, 2009.
Bi-orthogonal Wavelet based Adaptive Image Watermarking using Human Visual System and Fuzzy Inference System

- Enpingli, Huaping Liang, Xinxin Niu, "Image Watermarking Scheme Based On Wavelet Tree Quantization Robust To Geometric Attacks", IEEE Proceedings of Sixth World Congress on Intelligent Control and Automation, pp. 10256-10260.

Index Terms

Computer Science
Security
Bi-orthogonal Wavelet based Adaptive Image Watermarking using Human Visual System and Fuzzy Inference System (FIS)

Keywords
Bi-orthogonal Wavelet Transform Human Visual System (HVS) Fuzzy Inference System (FIS)