Real Time Vehicle Routing Problem with Time Window Simultaneously Delivery Products and Pick up Wastage Materials with Proposed Master-Slave Genetic Algorithm

International Journal of Computer Applications
© 2013 by IJCA Journal

Volume 72 - Number 19
Year of Publication: 2013

Authors:
Padmabati Chand
J. R. Mohanty

10.5120/12653-9359
{bibtex}pxc3889359.bib{/bibtex}

Abstract

The real-time vehicle routing problem with time windows and simultaneous delivery products and pickup wastage materials (RT-VRPTWDPPWM) is formulated as extension of VRP. The real-time delivery/pickup demands are served by capacitated vehicles with limited initial loads. Moreover, pickup services aren't necessarily done after delivery services in each route. A improved genetic algorithm (master-slave genetic algorithm) is proposed. To generate offspring for the next generation for crossover (Sub Route Sequence Crossover Method (SRSCM) and for mutation (Sub Route Alter Mutation Method (SRAMM) methods are introduced. The results shows that the proposed algorithm can efficiently decrease the total route cost. Results of comparative tests are presented showing that the improved algorithm performs well on large populations.

References

- Dhaenens, C. , Lemesre, J. and Talbi, E. 2009. A new exact method to solve
 multi-objective combinatorial optimization problems. European Journal of Operational
 Vehicle Routing Problem with Time Window. In Proceedings of the CCSEIT Conference on
 Computer Science Engineering and Information Technology, IEEE Press, Sep. 2011, vol. 204,
 pp. 336-343.
- Ombuki, B., Ross, J., Brian, J. and Hanshar, F. 2006. Multi Objective Genetic
- Deb, K. 2001. Multi-Objective Optimization Using Evolutionary Algorithm. Chichester,
 UK: John Wiley & Sons, Ltd.
 Addison-Wesley.
 Algorithm for Multiobjective Optimization. In Proceedings of the IEEE Congress on Evolutionary
 Computation, pp. 1157-1162.
 optimisation and conceptual engineering design. In Proceedings of the CEC Conference on
 Evolutionary Computation, vol. 1.
- Stanley, K. O. and Miikkulainen, R. 2006. Evolving Neural Networks through
 algorithm to refine input data selection for air temperature prediction using artificial neural
- Devert, A. Weise, T. and Tang, K. 2012. A Study on Scalable Representations for
 Evolutionary Optimization of Ground Structures. Journal of Evolutionary Computation, vol. 20,
 No. 3, pp. 453-472.
- Chandra, A. and Yao, X. 2006. Ensemble Learning Using Multi-Objective Evolutionary
 genetic algorithms. A tutorial, Reliability Engineering and System Safety, Elsevier Press, vol. 91,
 pp. 992-1007.
 750–775.
- Bianchessi, N. and Righini, G. 2007. Heuristic algorithms for the vehicle routing
 problem with simultaneous pick-up and delivery. Journal of Computers & Operations Research,
 vol. 34, pp. 578–594.

Index Terms

Computer Science
Algorithm

Keywords
Genetic Algorithm (GA) Multi Objective Genetic Algorithm (MOGA) Sub Route Sequence Crossover Method (SRSCM)

Sub Route Alter Mutation Method (SRAMM)

Vehicle Routing Problem (VRP)