Abstract

In the fast pacing world, it has becomes essential to so many gadgets that humans should take their effort to understand and use them. One such device is an Electronic Nose (E-Nose). There is still a long voyage ahead before artificial Electronic nose is developed completely. This work is a commendation for refining and enhancing current detection capabilities. Gas sensors used in electronic noses are based on broad selectivity profiles, mimicking the responses of olfactory receptors in the biological olfactory system. To identify a particular odour, the design is should be able to detect the odour which sufficient confidence and hence saving the humans for hazardous situation and false alarms.

References

- Adria Btsill-i-Petit and Alan F. Murray, "Synchrony Detection and Amplification by Silicon Neurons with STDP Synapses"; IEEE Transactions on Neural Networks, Vol. 15, No. 5, 2004

- John J. Wade, Liam J. McDaid, Jose A. Santos, and Heather M. Sayers, "SWAT: A Spiking Neural Network Training Algorithm for Classification Problems"; IEEE Transactions on Neural Networks, Vol. 21, No. 11, 2010

- Alphus Dan Wilson, “Future Applications of Electronic-Nose Technologies in Healthcare and Biomedicine”, www.intechopen.com

Index Terms

Computer Science
Electronics

Keywords
Gas sensors E nose ARM 7 processor Analog to digital converters