Abstract

Image compression is to reduce irrelevance data and redundancy of the image data in order to be able to store or transmit data in an efficient form. Image compression scheme either be in lossy method or lossless method. Lossy algorithms are especially suitable for transmit images across the network with minor (sometimes imperceptible) loss of fidelity of information. In this work, propose MPC (Maximum PSNR using Coefficient) using DCT algorithm for image compression and reconstruction taking benefit from the advantages of DCT algorithms. The algorithm performs the Discrete Cosine Transform (DCT) on the coefficients. The objective of the proposed system to study how the image is compressed using MPC method and discrete cosine transforms to attain maximum PSNR value. To attain maximum PSNR value, using coefficient, the images are analyzed and get compressed image with good quality. Coefficient reads the index of RGB values of given input image and processing that image in iteration manner. Coefficient is the most important factor that affects the image quality. Using Coefficients in Matlab, the images are analyzed and get maximum PSNR value is attained.
Analysis of MPC Image Compression using DCT 2 in Matlab

References

- Prabhakar Telagarapu, A. Lakshmi Prasanthi, G. Vijaya Santhi, 2011, VI: 4-No. 3, "Image Compression Using DCT and Wavelet Transformation"; IJSIP.
- Anilkumar Katheritiya, Swati Patel, Mahesh Goyani, 2011, VI: 1-No: 2, Comparative Analysis between DCT & DWT Techniques of Image Compression;" IJEA.
- Er. Ramandeep, 2012, "Image Compression Using Discrete Cosine Transform and Discrete Wavelet Transform"; ISSN: 2229-6166
- T. Fryza, S. Hanus, 2003, "Image Compression Algorithms Optimized for MATLAB"; Vol. 12 No. 4
- Anton Obukhov, Alexander Kharlamov, 2008, "Discrete Cosine Transform for 8x8 Blocks with CUDA";

Index Terms

Computer Science

Image Processing
Keywords
PSNR MPC Discrete Cosine Transform Coefficient Matlab