Abstract

In a distributed system, synchronization of time is an important functionality for supporting real-time scenario like online banking applications, database queries and real time applications etc. A clock synchronization is necessary to measure the duration of activities that start on one node and terminate on another one. Although the some of the existing algorithms for time synchronization depend on sending and receiving messages from different system. Scheduling such task sets with time constraints requires timing information to be accurate. Synchronizing these clocks allows services in higher layers to assume a global time within certain bounds of accuracy. The system clocks of different nodes are not works on same clock time. Usually, there is an offset between the times, so accuracy is not achieved. The clock time collection interval, in which clock time of remote nodes are collected and corrected with global time, which determines the period of the correction of the local clocks. Such a decomposition can reduce delay and achieve accuracy in network. The paper presented in approach towards Delay Tolerant Synchronization Algorithm (DTSA) which is combination of Network Time Protocol (NTP) and Delay Tolerant Protocol (DTP) which synchronizes nodes in a network with Global Time Server (GTS) using NTP. Simulation results show that the DTSA reduces delay and achieve accuracy in scattered network.
Performance Analysis of DTSA in Distributed Network

References

- Ruggero Carli, Giada Giorgi, Claudio Narduzzi, "Comparative analysis of synchronization strategies in sensor network with misbehaving clocks"; IEEE 2012.
- J. Quesada, J. Uriarte Llano, R. Sebastián, M. Castro and E. Jacob, "Evaluation
Performance Analysis of DTSA in Distributed Network

of Clock Synchronization Methods for Measurement and Control using Embedded Linux SBCs;
IEEE 2012.
- Young Kyu Lee, Sung Hoon Yang, Taeg Yong Kwon and Chang Bok Lee," Evaluation of Synchronization Performance with PTP;
IEEE 2012.
- Peter Philipp and Simon Altmannshofer; Experimental Validation of a New Moving Horizon Estimator Approach for Networked Control Systems with Unsynchronized Clocks; IEEE Conf. June 27-June 29 2012.
- Slavko S ajic, Nebojsa Maletic, Branislav M. Todorovic and Milan S unjevaric; Frequency Hopping Synchronization Scheme Based on Real-Time Clock; IEEE 19th International Conference 2012.
- Jie Zhang, Jie Wu, Zhao Han, Liefeng Liu and Kaiyun Tian; Low Power, Accurate Time Synchronization MAC Protocol for Real-time Wireless Data Acquisition; IEEE 2012.
- Tamas Kovacshazy and Balint Ferencz; Performance Evaluation of PTPd, a IEEE 1588 implementation, on the x86 Linux platform for Typical Application Scenarios; IEEE 2012.
- Tal Mizrahi Marvell Yokneam; Slave Diversity: Using Multiple Paths to Improve the Accuracy of Clock Synchronization Protocols; IEEE 2012.
- Bong Jun Choi, Hao Liang, Xuemin Shen, Fellow, and Weihua Zhuang; Scattered
- Wilfried Steiner, Bruno Dutertre, "Layered Diagnosis and Clock-Rate Correction for the TTEthernet Clock Synchronization Protocol", pp. 244-253, IEEE 2011.

Index Terms

Computer Science
Networks

Keywords

Clock Synchronization Clock Accuracy Clock drift scattered environment Group synchronization

Network Delay

Synchronization issues