Abstract

In a distributed system, synchronization of time is an important functionality for supporting real-time scenario like online banking applications, database queries and real time applications etc. A clock synchronization is necessary to measure the duration of activities that start on one node and terminate on another one. Although the some of the existing algorithms for time synchronization depend on sending and receiving messages from different system. Scheduling such task sets with time constraints requires timing information to be accurate. Synchronizing these clocks allows services in higher layers to assume a global time within certain bounds of accuracy. The system clocks of different nodes are not works on same clock time. Usually, there is an offset between the times, so accuracy is not achieved. The clock time collection interval, in which clock time of remote nodes are collected and corrected with global time, which determines the period of the correction of the local clocks. Such a decomposition can reduce delay and achieve accuracy in network. The paper presented in approach towards Delay Tolerant Synchronization Algorithm (DTSA) which is combination of Network Time Protocol (NTP) and Delay Tolerant Protocol (DTP) which synchronizes nodes in a network with Global Time Server (GTS) using NTP. Simulation results show that the DTSA reduces delay and achieve accuracy in scattered network.
References

- Ruggero Carli, Giada Giorgi, Claudio Narduzzi, "Comparative analysis of synchronization strategies in sensor network with misbehaving clocks"; IEEE 2012.
- J. Quesada, J. Uriarte Llano, R. Sebastián, M. Castro and E. Jacob, "Evaluation
of Clock Synchronization Methods for Measurement and Control using Embedded Linux
SBCs;
IEEE 2012.
- Young Kyu Lee, Sung Hoon Yang, Taeg Yong Kwon and Chang Bok Lee,"
- Peter Philipp and Simon Altmannshofer," Experimental Validation of a New Moving
Horizon Estimator Approach for Networked Control Systems with Unsynchronized
- Slavko S ajic, Nebojsa Maletic, Branislav M. Todorovic and Milan S unjevaric,"
Frequency Hopping Synchronization Scheme Based on Real-Time Clock;", pp.
- Jie Zhang, Jie Wu, Zhao Han, Liefeng Liu and Kaiyun Tian," Low Power, Accurate

- Andrea Bondavalli, Francesco Brancati, Alessandra Flammini, and Stefano
Rinaldi," Master Failure Detection Protocol in Internal Synchronization Environment;",
- Daniele Fontanelli, David Maci," Master-less Time Synchronization for Wireless
- Cong Liu and Jie Wu," On Multicopy Opportunistic Forwarding Protocols in
Nondeterministic Delay Tolerant Networks;", IEEE Trans. on Parallel and Distributed
- Tamas Kovacshazy and Balint Ferencz," Performance Evaluation of PTPd, a IEEE
1588 implementation, on the x86 Linux platform for Typical Application Scenarios;", IEEE
2012.
- Muhammad Akhlaq and Tarek R. Sheltami," RTSP: An Accurate and
- Michal Pravda, Jiri Vodrazka, and Pavel Lafata," Simulations and Measurements of
- Tal Mizrahi Marvell Yokneam," Slave Diversity: Using Multiple Paths to Improve the
Accuracy of Clock Synchronization Protocols;", IEEE 2012.
- Petar Djukic and Prasant Mohapatra," Soft-TDMAC: A Software-Based 802.11
478-494, March 2012.
- Doudou Messaoud, Djenouri Djamel and Badache Nadib," Survey on Latency
Issues of Asynchronous MAC Protocols in Delay-Sensitive Wireless Sensor Networks;",
- M. Akhlaq and Tarek R. Sheltami," The Recursive Time Synchronization Protocol
- Jaeshin Jang, Sang Wu Kim, and Sunghong Wie," Throughput and Delay Analysis
524-532, IEEE October 2012.
- Xiong Xu,Zhenhua Xiong,Xinjun Sheng,Jianhua Wu,and Xiangyang Zhu," A New
Time Synchronization Method for Reducing Quantization Error Accumulation over Real-Time
- Bong Jun Choi, Halo Liang, Xuemin Shen, Fellow, and Weihua Zhuang," Scattered

- Wilfried Steiner, Bruno Dutertre, "Layered Diagnosis and Clock-Rate Correction for the TTEthernet Clock Synchronization Protocol," pp. 244-253, IEEE 2011.

Index Terms

Computer Science

Networks

Keywords

Clock Synchronization, Clock Accuracy, Clock drift, scattered environment, Group synchronization, Network Delay, Synchronization issues