Abstract

This study presents the design, modelling and simulation of variable speed wind turbine through the LCL type DC-DC resonant converter for grid connected wind energy system using MATLAB/Simulink. Owing to enhancing the power demand and environmental issues, power generation from renewable energy is getting more consideration. The designed converter has main merits like reduced switching loss using soft switching methods, reduced transformer size, and filter size. In addition, this paper investigates the resonant converter application to obtain a constant D. C voltage at the output of the designed converter, reduced stress, EMI, and high power density. In this paper, fuzzy logic controller (FLC) is used to regulate the output voltage of resonant converter in comparison with PI controller. The simulation has been done in MATLAB/Simulink frame work. It is shown that a resonant converter enhances voltage profile of power grid containing synchronous generator based wind system.

References

- Annamalai, M, Dr. M. vijaya kumar, life fellow, ISTE, "Modeling and simulation of variable speed wind turbine with resonant DC-DC converter," International conference on

- Sharad W. Mohod Member, IEEE, and Mohan V. Aware,"A statcom-control scheme for grid connected wind energy system for power quality improvement," IEEE system journal, vol. 4, No. 3, September 2010.
- S. H. Hosseni, R. Moradi, "A new active snubber cell for DC to DC converter," IEEE Transaction on power electronics, pp 349-359, 2008.
- M. Arutchelvi and S. Arul Daniel, "Composite controller for a hybrid power plant based on PV array fed wind-driven induction generators," Electrical power components and systems, pp. 759-773, Vol. 34, No. 7, July 2006.

Index Terms
Computer Science
Power Systems
Keywords

Resonant converter synchronous generator fuzzy logic controller
MATLAB/Simulink