Abstract

In this paper, the Bayes estimators of the unknown parameters of the Lomax distribution under the assumptions of gamma priors on both the shape and scale parameters are considered. The Bayes estimators cannot be obtained in explicit forms. So we propose Markov Chain Monte Carlo (MCMC) techniques to generate samples from the posterior distributions and in turn computing the Bayes estimators. Point estimation and confidence intervals based on maximum likelihood and bootstrap methods are also proposed. The approximate Bayes estimators obtained under the assumptions of non-informative priors, are compared with the maximum likelihood estimators using Monte Carlo simulations. One real data set has been analyzed for illustrative purposes.
References

- H. N. Nagaraja, Record values and related statistics-a review, Comm. Statist. Theory
Methods 17 (1988), 2223- 2238.
- M. Z. Raqab, Inferences for generalized exponential distribution based on record
- M. Z. Raqab and M. Ahsanullah, Estimation of the location and scale parameters of the
 generalized exponential distribution based on order statistics, J. Statist Comput Simul. 69
- S. I. Resnick, Extreme values, Regular variation, and point processes,
- S. Rezaei, R. Tahmasbi and M. Mahmoodi, Estimation of $P[Y_i|X]$ for generalized
- C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Second edition,
- A. A. Soliman, A. H. Abd Ellah, N. A. Abou-Elheggag, and A. A. Modhesh,
 Bayesian inference and prediction of Burr type XII distribution for progressive first-failure
- S. K. Upadhyay and M. Peshwani, Choice between Weibull and lognormal models: a
 simulation based Bayesian

Index Terms

Computer Science
Algorithms

Keywords

Lomax distribution Bayesian and non-Bayesian estimations Gibbs and Metropolis
sampling methods. ifx

Bootstrap