Adaptive Approach of Fault Prediction in Software Modules by using Discriminative and Generative Model of Machine Learning

International Journal of Computer Applications
© 2013 by IJCA Journal

Volume 74 - Number 12
Year of Publication: 2013

Authors:
Varneet Kaur
Amit Arora

10.5120/12937-9964
{bibtex}pxc3889964.bib{/bibtex}

Abstract

Software quality assurance is the most important activity during the development of software. Defective software modules may increase costs and decrease customer satisfaction. Hence, effective defect prediction models or techniques are very important in order to deliver efficient software. In this research different machine learning algorithms are used to predict three main prediction performance measures i.e. precision, recall and f-measure. The accuracy of the software modules is being calculated. Different classifiers are also used in order to predict the values of these measures by using important attributes only. The results obtained after applying both the techniques i.e. attribute selection and without attribute selection, on all the datasets, are then analysed and best predicted results are chosen in order to predict the correct values of prediction performance measures. The accuracy of some software modules can be improved to 91.16%, recall and precision to 1 after using attribute selection techniques in CM1 dataset. In PC1 dataset the accuracy has been improved to 93.778%.

References

- T. Menzies et al., "Mining Repositories to Assist in Project Planning and Resource
Adaptive Approach of Fault Prediction in Software Modules by using Discriminative and Generative Models

- Lan Guo, Yan Ma, Bojan Cukic, Harshinder Singh, "Robust Prediction of Fault-pronness of Random Forests.”

- http://www.stat.berkeley.edu/users/breiman/RandomForests
- http://promise.site.uottawa.ca/SERepository/datasets-page.html

Index Terms
Computer Science
Artificial Intelligence

Keywords
Defect Prediction Models Precision Recall F-measure Classifiers