Abstract

In this paper, An Equiangular Spiral Slot Patch Antenna has been designed and simulated at operating frequency range between 4 GHz to 10 GHz. This antenna is modeled on a thin single sided Rogers RO4003C substrate with dielectric constant of 3.38. The proposed design is achieved by cutting a equiangular spiral slot on the circular patch. The modeling and simulation of the proposed Antenna has been done with Finite Element Method (FEM) based software COMSOL Multiphysics. A parametric analysis has been done with variation in geometry of Spiral slot. The results of the proposed Equiangular Spiral Slot Antenna acclaim its use for C-band applications and also demonstrate its wideband operation in the range 4 GHz to 10 GHz.

References

- K. Siakavara, Methods to Design Microstrip Antennas for Modern Applications, Aristotle University of Thessaloniki, Dept. of Physics, Radio communications Laboratory, Thessalonik, Greece.

Index Terms

Computer Science

Signal Processing

Keywords

Equiangular Spiral Slot antenna Finite Element Method (FEM)