Abstract

Let $G(V,E)$ be a graph with p vertices and q edges. A graph $G(p,q)$ is said to be a Beta combination graph if there exist a bijection $f: V(G) \to \{1,2,\ldots,p\}$ such that the induced function $B_f: E(G) \to \mathbb{N}$, \mathbb{N} is a natural number, given by $B_f(\{uv\})$, every edges $uv \in G$ and are all distinct and the function f is called the Beta combination labeling. In this paper, we proved the Petersen graph, Complete graph K_n ($n \geq 8$), Ladder L_n (n even), fan f_n ($n \geq 2$), wheel W_n ($n \geq 3$), path P_n, cycle C_n ($n \geq 3$), friendship graph F_n ($n \geq 1$), complete bipartite graph $K_{n,n}$ ($n \geq 2$), Tree T_n, triangle snake, n-bistar graph $B_{n,n}$ and Star graph $K_{1,n}$ ($n > 1$) are the Beta combination graphs. Also we proved Complete graph K_n ($n > 8$) is not a Beta combination graph.

References

- B. D. Acharya and S. M. Hegde, Arithmetic graphs, J. Graph Theory, 14(3)(1990), 275-299.
Beta Combination Graphs

- S. M. Hegde and Sudhakar Shetty, Combinatorial Labelings of Graphs, Applied Mathematics E-Notes, 6(2006), 251-258.
- F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1972.

Index Terms

Computer Science Applied Sciences

Keywords
Beta combination graph and Beta combination labeling