Abstract

In this paper, a fuzzy controllers type Takagi_Sugeno is optimized by method of Particle Swarm Optimization (PSO). This algorithm automatically adjust the membership function of fuzzy controllers to control a trajectory of nonholonomic mobile robot that involves path trajectory using two optimized fuzzy controllers one for speed control and the other for azimuth control. The mobile robot is modelled in Simulink and PSO algorithm is implemented using MATLAB. Simulation results show good performance for the proposed control scheme. The results will compared with PSO-PID controllers that control the same model of mobile robot.

References

A PSO Optimized Fuzzy Control Scheme for Mobile Robot Path Tracking

Conference on Neural Networks, WA Australia, p. 1942–8
- A. Haj-Ali and H. Ying. 2004. Structural Analysis of Fuzzy Controllers with Nonlinear Input Fuzzy Sets in Relation to Nonlinear PID Control with Variable Gains. Associate Editor Gary G. Yen under the direction of Editor Robert R. Bitmead, Wayne State University, Detroit, MI48202, USA.
A PSO Optimized Fuzzy Control Scheme for Mobile Robot Path Tracking

Index Terms

Computer Science
Artificial Intelligence

Keywords

Mobil Robot Fuzzy Control Particle Swarm Optimization Kinematic and Dynamic
Model Particle Swarm
Fuzzy controller (PSFC)

PSO-PID