Abstract

This paper deals with a stochastic model for a two-unit hot standby combined hardware-software system in which one unit is operative and the other is hot standby. The operative unit may have hardware or software failures and goes to repair. This leads to degradation of the system and then hot standby unit is under operation. Further on hardware or software failures of the hot standby unit the system goes to complete failures. Various measures of performance of the system are obtained using semi-Markov process and regenerative point techniques. Numerical results and graphs pertaining to a particular case are also included.
Analysis of Stochastic Model on a Two-Unit Hot Standby Combined Hardware-Software System

290-293

Index Terms

Computer Science
Software Engineering

Keywords
Analysis of Stochastic Model on a Two-Unit Hot Standby Combined Hardware-Software System

Two-Unit Hot Standby System Combined hardware-software system reliability
mean up time
profit

semi-Markov and Regenerative point techniques.