Abstract

Let \(G(V,E) \) be a graph with \(p \) vertices and \(q \) edges. A graph \(G(p,q) \) is said to be a Beta combination graph if there exist a bijection \(f: V(G) \to \{1,2,\ldots,p\} \) such that the induced function \(B_f: E(G) \to \mathbb{N} \), \(\mathbb{N} \) is a natural number, given by \(B_f(uv) = \), every edges \(uv \in G \) and are all distinct and the function \(f \) is called the Beta combination labeling of \(G \) [8]. In this paper, we prove quadrilateral snake \(Q_n \), double triangular snake, alternate triangular snake \(A(T_n) \), alternate quadrilateral snake \(A(Q_n) \), helm \(H_n \), the gear graph, \(\text{Comb } P_n \cap K_1 \), the graph \(C_n \cap K_1 \) and the diamond graph are the Beta combination graphs.

References

- B. D. Acharya and S. M. Hegde, Arithmetic graphs, J. Graph Theory, 14(3)(1990), 275-299.
- F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1972.
- S. M. Hegde and Sudhakar Shetty, Combinatorial Labelings of Graphs, Applied Mathematics E-Notes, 6(2006), 251-258.

Index Terms

Computer Science
Applied Mathematics

Keywords

Beta combination graph and Beta combination labeling.