Abstract

A parallel-prefix adder gives the best performance in VLSI design. However, performance of Ladner-Fischer adder through black cell takes huge memory. So, gray cell can be replaced instead of black cell which gives the Efficiency in Ladner-Fischer Adder. The proposed system consists of three stages of operations they are pre-processing stage, carry generation stage, post-processing stage. The pre-processing stage focuses on propagate and generate, carry generation stage focuses on carry generation and post-processing stage focuses on final result. In ripple carry adder each bit of addition operation is waited for the previous bit addition operation. In efficient Ladner - Fischer adder, addition operation does not wait for previous bit addition operation and modification is done at gate level to improve the speed and to decreases the memory used.

References

- Pakkiraiah. Chakali, madhu Kumar. Patnala "Design of high speed Ladner - Fischer based carry select adder" IJSCE march 2013
- Haridimos T. Vergos, Member, IEEE and Giorgos Dimitrakopoulos, Member,
IEEE, "On modulo 2n+1 adder design" IEEE Trans on computers, vol. 61, no. 2, Feb 2012
- David h, k hoe, Chris Martinez and Sri Jyothsna vundavalli "Design and characterization of parallel prefix adders using FPGAs;", Pages. 168-172, march 2011 IEEE.

Index Terms

Computer Science
Circuits And Systems

Keywords
Ripple carry adder Efficient Ladner–Fischer adder Black cell Gray cell