Let $G = (V, E)$ be a simple, finite, undirected graph with $|V| = n$ and $|E| = m$. Kulli introduced the new graph valued function namely the semi-total block graph of a graph G. Let $B_1 = \{u_1, u_2, \ldots, u_r, r \geq 2\}$ be a block of G. Then we say that the point u_1 and block B_1 are incident with each other, as are u_2 and B_1, u_3 and B_1 and so on. If two distinct blocks B_1 and B_2 are incident with a common cut point then they are called adjacent blocks. Let $B = \{B_1, B_2, \ldots, B_p\}$ be the set of blocks of G. The semi-total block graph $T_b(G)$ of a graph G is the graph whose point set is $V(G) \cup B(G)$ in which any two points are either adjacent or the corresponding members of G are incident. The points and blocks of G are members of $T_b(G)$. A non-empty set $D \subseteq V \cup B$ is a dominating set of $T_b(G)$ if every point in $(V \cup B) - D$ is adjacent to at least one point in D (Muddebihal, M.H. et al 2004). The domination number of $T_b(G)$ is denoted by $\gamma[T_b(G)]$ and it is defined as the minimum cardinality taken over all the minimal dominating sets of $T_b(G)$.

Abstract

Let $G = (V, E)$ be a simple, finite, undirected graph with $|V| = n$ and $|E| = m$. Kulli introduced the new graph valued function namely the semi-total block graph of a graph G. Let $B_1 = \{u_1, u_2, \ldots, u_r, r \geq 2\}$ be a block of G. Then we say that the point u_1 and block B_1 are incident with each other, as are u_2 and B_1, u_3 and B_1 and so on. If two distinct blocks B_1 and B_2 are incident with a common cut point then they are called adjacent blocks. Let $B = \{B_1, B_2, \ldots, B_p\}$ be the set of blocks of G. The semi-total block graph $T_b(G)$ of a graph G is the graph whose point set is $V(G) \cup B(G)$ in which any two points are either adjacent or the corresponding members of G are incident. The points and blocks of G are members of $T_b(G)$. A non-empty set $D \subseteq V \cup B$ is a dominating set of $T_b(G)$ if every point in $(V \cup B) - D$ is adjacent to at least one point in D (Muddebihal, M.H. et al 2004). The domination number of $T_b(G)$ is denoted by $\gamma[T_b(G)]$ and it is defined as the minimum cardinality taken over all the minimal dominating sets of $T_b(G)$.

Abstract
In this paper, we defined Inverse domination in semi-total block graphs. Let \(D \) be the minimum dominating set of \(Tb(G) \). If \((V \cup B) - D\) contains a dominating set \(D' \) then \(D' \) is called the Inverse dominating set of \(Tb(G) \). The Inverse domination number in semi-total block graph is denoted by \(\gamma'[Tb(G)] \) and it is defined as the minimum cardinality taken over all the minimal Inverse dominating sets of \(Tb(G) \). In this paper, many bounds on \(\gamma'[Tb(G)] \) are attained and its exact values for some standard graphs are found. Its relationships with other parameters are investigated. Nordhaus-Gaddum type results are also obtained for this parameter.

Reference

Index Terms

Computer Science
Graph Theory

Key words

Domination number
Inverse domination number
semi-total block graph

independence number