Abstract

Risk assessment is an important and popular aid in the decision making process. The aim of risk assessment is to estimate the severity and likelihood of harm to human health from exposure to a substance or activity that under plausible circumstances can cause to human health. In risk assessment, it is most important to know the nature of all available information, data or model parameters. More often, it is seen that available information model parameters, data are usually tainted with aleatory and epistemic uncertainty or both type of uncertainty. When some model parameters are affected by aleatory uncertainty and other some parameters are affected by epistemic uncertainty, how far computation of the risk is concern, one can either transform all the uncertainties to one type of format or need for joint propagation of uncertainties. In this paper, an effort has been made to combine probability distributions, normal fuzzy numbers and generalized interval valued fuzzy numbers (IVFNs) within the same framework.

References

- Anoop M. B. , Balaji Rao K. , Lakshmanan N. Safety assessment of austenitic steel

- Limbourg, P. and de Rocquigny, E., Uncertainty analysis using evidence theory –
 confronting level-1 and level-2 approaches with data availability and computational constraints,
- Maxwell R. M., Pelmulder S. D., Tompson A. F. B., Kastenberg W. E., On the
 development of a new methodology for groundwater-driven health risk assessment, Water
- Pedronia N., Zioa E., Ferrariob E., Pasanisid A., Couplet M., Propagation of aleatory
 and epistemic uncertainties in the model for the design of a flood protection dike, "PSAM
 11 & ESREL (2012), Helsinki : Finland.
- Pedronia N., Zioa E., Ferrariob E., Pasanisid A., Couplet M. Hierarchical propagation
 of probabilistic and non-probabilistic uncertainty in the parameters of a risk model, Computers &
- Rao, K. D., Kushwaha, H. S., Verma, A. K., Srividya A. Quantification of epistemic and
 aleatory uncertainties in level-1 probabilistic safety assessment studies. Reliability Engineering
- Sambuc R., "Function ?-Flous, Application a l’aide au Diagnostic en
 Pathologie Thyroidienne"; These de Doctoraten Medicine, University of Marseille (1975).
- Zeng, W., Shi, Y. (2005), "Note on interval-valued fuzzy set", Lecture notes
 in computer science, 3613, 20–25.
 International Conference on, Vol. 1.

Index Terms

Computer Science
Fuzzy Systems

Keywords
Aleatory & Epistemic Uncertainty Fuzzy Set Generalized Fuzzy Number Interval
Valued Fuzzy Numbers

Hybrid Method

Risk Assessment.