Abstract

In this paper, an autonomous navigation and obstacle avoidance strategy is proposed for an omnidirectional mobile robot. The robot plans a path, starting from an initial point going to a target point. A hybrid approach has been developed where a global approach has been applied to the motion along the desired path (DP) using 2nd order polynomial planning, while a local reactive approach is used to avoid collisions with static and/or dynamic obstacles based on the "sensing vector" and the "gap vector" concepts. The "sensing vector" is a binary vector which provides information about obstacles detection, while the "gap vector" provides information about a possible nearest gap the robot can pass through it.

References

- W. Hai-hua and L. Dong-liang, obstacle avoidance path planning in robot soccer, IEEE
Autonomous Navigation and Obstacle Avoidance for a Wheeled Mobile Robots: A Hybrid Approach

2nd Conference on Environmental Science and Information Application Technology, pp. 748-750, 2010

- J. Minguez and L. Montano, Nearness Diagram (ND) Navigation: Collision Avoidance in
Autonomous Navigation and Obstacle Avoidance for a Wheeled Mobile Robots: A Hybrid Approach

Index Terms

Computer Science Applied Sciences

Keywords

Omnidirectional mobile robot; autonomous navigation; path planning ; obstacle avoidance; hybrid approach.