Abstract

In an architecture-based software system, reliability allocation to different sizes of components plays a major role throughout the software product design phase, which has a close relationship with cost and reliability of software. In this paper, a dynamic programming algorithm is used to allocate the reliability and cost of each component for designing software using step length. Here we applied both minimum step length and maximum step length for allocation of reliability to different sizes of components. The result of our experiment shows an optimal solution or near optimal to the problem of choosing the component containing the software can be achieved with lower cost.

References

Comparison of Two Methods Cost and Reliability for Components in Architecture-based Software System using Dynamic Programming

Index Terms
Computer Science
Software Systems
Comparison of Two Methods Cost and Reliability for Components in Architecture-based Software System

Keywords
Architecture-based Software Software Reliability Reliability allocation Dynamic programming
Software development
Software model
Reliability Estimation