Abstract

Association between causal genes and their genetic diseases is an important problem concerning human health. Linkage analysis is such a method that can identify which unknown disease genes are located in chromosomal region out of hundreds of candidate genes according to their functions, interactions, and pathways which is good identification of genes associated with general/hereditary disorders. Here, we used method for prioritization of candidate genes of Dementia by the use of a global network distance measure, Random Walk Analysis, which detects neurological disorder been associated with distribution of sub-network among the genes.

References

- Franke, L. et al.
- Gaulton, K. J. et al.
 A computational system to select candidate genes for complex human traits.
Bioinformatics, 23, 1132–1140.
 - Perez-Iratxeta, C. et al.
 - Update of the G2D tool for prioritization of gene candidates to inherited diseases.
 - Aerts, S. et al.
 - Sam, L. et al.
 - Discovery of protein interaction networks shared by diseases. In Pacific Symposium on
 - Radivojac, P. et al.
 - An integrated approach to inferring gene-disease associations in humans. Proteins, 72,
 1030–1037.
 - Karni, S. et al.
 181–189.
 - Ma, X. et al.
 - CGI: a new approach for prioritizing genes by combining gene expression and
 - George, R. A. et al.
 - Analysis of protein sequence and interaction data for candidate disease gene prediction.
 - Ozgur, A. et al.
 - Identifying gene-disease associations using centrality on a literature mined
 - van Driel, M. A. et al.
 - Perez-Iratxeta, C., Bork, P., and Andrade, M. A.
 31, 316–319.
 - Lo`pez-Bigas, N., and Ouzounis, C. A.
 - Genome-wide identification of genes likely to be involved in human genetic disease.
Nucleic Acids Res. 32, 3108–3114.
 - Ot, M., Snel, B., Huynen, M., and Brunner, H. G.
 - Predicting disease genes using protein–protein interactions. J. Med. Genet. 43,
 691–698.
 - Huynen, M., Snel, B., Lathe, W. 3rd and Bork, P.
 - Predicting protein function by genomic context: quantitative evaluation and qualitative
 - Eisenberg, D., Marcotte, E. M., Xenarios, I. and Yeates, T. O.
 - Prioritizing candidate disease genes by network-based boosting of genome-wide
 - Moreau, Y. and Tranchevent, L. C.
 - Computational tools for prioritizing candidate genes: boosting disease gene discovery.
Protein Network for Associating Genes with Dementia

- Piro, R. M. and Di Cunto, F.
- Lee, J. M. and Sonnhammer, E. L. L.
- McKusick, V.
- Kohler, S., Bauer, S., Horn, D. and Robinson, P. N.
- Kamburov, A., Pentchev, K., Galicka, H., Wierling, C., Lehrach, H. and Herwig, R.
- Niu, Y., Otasek, D. and Jurisica, I.
- Evaluation of linguistic features useful in extraction of interactions from PubMed; application to annotating known, high-throughput and predicted interactions in I2D. Bioinformatics, 26, 111–119.
- Patil, A., Nakai, K. and Nakamura, H.
- Balaji, S., McClendon, C., Chowdhary, R., Liu, J. S. and Zhang, J.
- Saric, J., Jensen, L. J., Ouzounova, R., Rojas, I. and Bork, P.
- Skrabaneck, L., Saini, H. K., Bader, G. D. and Enright, A. J.
Protein Network for Associating Genes with Dementia

- Harrington, E. D. , Jensen, L. J. and Bork, P.
- Jensen, L. J. , Julien, P. , Kuhn, M. , von Mering, C. , Muller, J. , Doerks, T. and Bork, P.
- Kuhn, M. , von Mering, C. , Campillos, M. , Jensen, L. J. and Bork, P.
- Brohee, S. , Faust, K. , Lima-Mendez, G. , Sand, O. , Janky, R. , Vanderstocken, G. , Deville, Y. and van Helden, J.

Index Terms

Computer Science
Applied Sciences

Keywords
Genetic diseases; Dementia; Random Walk Analysis; Neurological disorder.