Abstract

This paper deals with a syntactic approach for character recognition using approximate string matching and chain coding of characters. Here we deal only with the classification of characters and not on other phase of the character recognition process in a Optical character Recognition. The character image is first normalized to a specified size then by boundary detection process we detect the boundary of the character image. The character now converted to boundary curve representation of the characters. Then the curve is encoded to a sequence of numbers using Freeman chain coding. The coding scheme gives a sequence of numbers ranges from 0 to 7. Now the characters are in form of strings. For training set we will get a set of strings which is stored in the trie. The extracted unclassified character is also converted to string and searched in the trie. As we are dealing with the character which can be of different orientation so the searching is done with approximate string matching to support noisy character that of different orientation. For approximate string matching we use Look Ahead Branch and Bound scheme to prune path and make the approximation accurate and efficient. As we are using trie data structure, so it take uniform time and don’t dependent on the size of the input. When we performed our experimentation for noiseless character that is
print character it successfully recognize all characters. But when we tested with the different
variation of the character then it detect most of the character except some noisy character.

References

- S. K. Pradhan and S. Sarkar, "Article: Character recognition using discrete curve
 with the use of approximate string matching," IJCA Proceedings on International
 Conference in Distributed Computing and Internet Technology 2013, vol. ICDCIT, pp. 17–22,
 January 2013.
- S. K. Pradhan and A. Negi, "A syntactic pr approach to telugu handwritten
 character recognition," in Proceeding of the workshop on Document Analysis and
 approximate string matching," Pattern Analysis & Applications, vol. 9, pp. 177–187,
- H. Bunke and P. Wang, Handbook of Character Recognition and Do. World Scientific,
 1997.
 character recognition system using directional element feature and asymmetric mahalanobis
 distance," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 21, no. 3,
- H. Liu and X. Ding, "Handwritten character recognition using gradient feature and
 quadratic classifier with multiple discrimination schemes," in Document Analysis and
- A. Negi, C. Bhagvati, and B. Krishna, "An ocr system for telugu," in ICDAR,
 character recognizer for telugu scripts using multiresolution analysis and associative
- R. E. W. Rafael C. Gonzalez, Digital Image Processing. New Delhi, India:
- B. J. Oommen and R. K. S. Loke, "Pattern recognition of strings with
 substitutions, insertions, deletions and generalized transpositions," Pattern Recognition,
- R. Baeza-yates and G. Navarro, "Fast approximate string matching in a

Index Terms

Computer Science
Pattern Recognition
Keywords
Syntactic Pattern Recognition Freeman Chain Coding trie Character Recognition

Approximate string matching

Boundary detection.