Abstract

In order to aid in the processes of data collection, interpolation, analysis, and predictive model development the integration of commercial remote sensing and spatial information technologies (CRS&SI) with object oriented modeling (OOM) using the model view controller architecture (MVC) has been applied. A Decision Support System (DSS) application that uses CRS&SI for collecting atmospheric, subsurface, and predicted weather data, is used to compare, interpolate, measure, predict, and determines the depth of frost and thaw penetration into the subsurface of roadways across New England. This process is used in order to guide State Departments of Transportation (DOT) in determining when to impose Seasonal Load Restrictions (SLR). Seasonal load restrictions limit the travel of heavy trucks on certain roads such that state DOT's can limit the damage to the roadway surface. The implemented DSS consists of a web based front end graphical user interface (GUI) that leverages popular web based technologies, programming interfaces, data collection scripts, data evaluation scripts, data interpolation scripts, predictive modeling, and a centralized database. The database was developed for storing newly collected, historic, and predicted data. This paper includes the description of the general purpose and use of the system and a discussion regarding the architecture, individual components, interactions, and a description of the sequence of events for data collection, processing, prediction, and interpolation.
References

- Minnesota Dept. of Transportation, Policy, Safety & Strategic Initiatives Division Technical Memorandum No 09-09- MAT-02, dotapp7. dot. state. mn. us/edms/download?docld=740964 (accessed March 2010), 2009.
- Mahoney, J., R. Rutherford, and G. Hicks, Guidelines for Spring Highway Use Restrictions, Report No. WA-RD- 80. 2, Washington State Department of Transportation,
Implementation of Decision Support System (DSS) through the Integration of Commercial Remote Sensing (CRS), Model-View-Controller (MVC) Architecture and Object-Relational Mapping (ORM)

- David C. Farwell, A Model Based Approach to Decision Support System Flexibility, Interfaces 1982 12:5, 79-86
Implementation of Decision Support System (DSS) through the Integration of Commercial Remote Sensing (CRS), Model-View-Controller (MVC) Architecture and Object-Relational Mapping (ORM)

- Avraham Leff, James T. Rayfield, IBM Research Division

Index Terms

Computer Science

Keywords

commercial remote sensing decision support system seasonal load restrictions
frost-thaw predictive model
and satellite data collection
model view controller
object relational mapping